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Comparison of flux creep and nonlinear E − j approach for analysis of vortex motion

in superconductors
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Two commonly accepted approaches for simulations of thermally-activated vortex motion in su-
perconductors are compared. These are (i) the so-called flux creep approach based on the expression
E = vB relating the electric field E to the velocity v of the thermally-activated flux motion and the
local flux density B, and (ii) the approach employing a phenomenological nonlinear current-voltage
curve, E(j). Our results show that the two approaches give similar but also distinctly different
behaviors for the distributions of current and flux density in both a long slab and thin strip geom-
etry. The differences are most pronounced where the local B is small. Magneto-optical imaging of
a YBa2Cu3O7−δ thin film carrying a transport current was performed to compare the simulations
with experimental behavior. It is shown that the flux creep approach describes the experiments far
better than simulations based on the E(j) approach.

PACS numbers: 74.25.Ha, 74.60.Ge, 74.76.Bz

I. INTRODUCTION

The term flux creep is used to describe a thermally-
activated motion of flux lines in superconductors. This
motion is characterized by a velocity strongly dependent
on the local current density. In high-temperature su-
perconductors (HTSCs), the flux creep can be specially
pronounced because of small flux pinning energies and
high temperatures.1,2 An account of the flux creep is
therefore crucially important for understanding the time-
dependent magnetic behavior of HTSCs. In the literature
one finds numerous papers making use of flux creep anal-
ysis to describe the evolution of flux and current density
distributions, current-voltage curves, magnetization and
magnetic susceptibilities for superconductors of various
shapes.3–7

Interestingly, there exist today two commonly accepted
approaches for the analysis of thermally-activated flux
motion. The first one, the so-called flux creep approach,
assumes a particular microscopic pinning mechanism,
which defines the pinning energy U and its dependence
on the local values of current density j and flux density
B. The velocity of the thermally-activated flux motion,
v, then determines the local electric field according to
E = vB. The second approach, on the other hand, em-
ploys a phenomenological nonlinear current-voltage re-
lation, E(j). For brevity, we will call this the E − j
approach.

The present paper is devoted to a detailed compari-
son of these two approaches. We carry out numerical
simulations for the most conventional choice of E(j) and
U(j, B) and set focus on the clear differences in the result-
ing behavior. The numerical findings are then compared
to current density distributions measured in YBaCuO
films using magneto-optical imaging of flux density pro-
files. Distinct features in the observed current distribu-
tions allow us to conclude which approach gives the more
realistic description.

II. THE TWO APPROACHES

To compare the two approaches we consider a one-
dimensional flux creep problem where the flux moves
along the x direction, the magnetic induction B is di-
rected along the z-axis, while the electric field E is par-
allel to the y-axis. The Maxwell equation has then the
form

∂B

∂t
= −∂E

∂x
. (1)

In the flux creep approach, since it represents an activa-
tion process, the velocity of the vortex motion is given
by

v = vce−U(j,B)/kT , (2)

where vc is the velocity when U = 0. In the case that the
pinning energy has a logarithmic dependence on the cur-
rent, U(j, B) = Uc ln(jcU/j), it follows that the electric
field equals

E = vcB (j/jcU )Uc/kT . (3)

In the E − j approach, the phenomenological E(j) re-
lation is usually chosen in the power law form,

E = Ec (j/jcE)n , (4)

with n� 1, and where jcE and Ec are constants with di-
mension of current density and electric field, respectively.

Comparing Eqs. (4) and (3) one can see that the expo-
nent n in the E − j approach plays the same role as the
ratio Uc/kT in the flux creep model. However, even if
n = Uc/kT , there still remains an important difference.
In Eq. (3) one has E ∝ B, i.e., the electric field induced
by the vortex motion is proportional to the number of
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moving vortices. In the E−j approach, Eq. (4), this pro-
portionality is absent. As a result, the two approaches
become different if all parameters, jcU , jcE , and Ec are
independent of B, which is the conventional assumption.8

In the E − j approach at n → ∞ the electric field
tends to zero for j < jcE , while it becomes infinitely large
for j > jcE . This situation is equivalent to the critical-
state model characterized by the critical current density
jcE . Similarly, for Uc/kT → ∞ the flux creep approach
reproduces the critical-state model with critical current
density jcU . Therefore, in the limit Uc/kT, n →∞, and
jcU = jcE both approaches become equivalent. Accord-
ingly, their difference is expected to grow as n and Uc/kT
becomes smaller.

To complete the set of equations one needs also a rela-
tion between the flux and current density. Let us assume
that the superconductor has infinite extension along the
y-axis, the direction of current, and occupies the region
−w ≤ x ≤ w. In the z-direction it can be either infinite
(a slab), or very thin (a strip) with thickness d � w.
With the magnetic field Ba applied along z, the flux and
current density can in both cases be considered uniform
in this direction. Making the common assumption that
B = µ0H, one has for a slab that

µ0j = −∂B/∂x . (5)

For a thin strip the Biot-Savart law yields

B(x) = Ba +
dµ0

2π

∫ w

−w

j(u)
u− x du . (6)

It is convenient to invert the latter equation, which
gives11

j(x) =
2

πdµ0

∫ w

−w

B(x′)− Ba
x− x′

√
w2 − x′2
w2 − x2

dx′

+
IT

πd
√
w2 − x2

, (7)

where IT is the transport current.
In the numerical simulations we solve the set of equa-

tions (1), (3) for the flux-creep approach, and (1), (4)
for the E − j approach, respectively. The relation be-
tween B and j is taken from Eq. (5) for the case of a
slab, and from Eq. (7) in the thin strip geometry. The
critical current densities, jcU and jcE , are assumed to be
B-independent.

III. NUMERICAL RESULTS

A. Comparison with exact solution

As a check of the quality of our numerical simulation
scheme we compared numerical results for the E − j ap-
proach with an exact analytical solution, which can be
obtained in the slab case. Assume that at t = 0 a finite

external magnetic field is suddenly turned on. The flux
density distribution can then be expressed as a function
of a single scaling parameter as long as the flux fronts
penetrating from opposite sides do not overlap. With
E ∝ jn, the scaling law has the form9

B(x, t) = af(ξ), ξ = (w − x)a−
n−1
n+1 t−

1
n+1 . (8)

Here

f(ξ) =
Φ (ξ/ξ0)

Φ(0)
, Φ(z) =

∫ 1

z

dx (1− x2)
1

n−1 , (9)

where ξ0 is given by the equation

ξn+1
0 [Φ(0)]n−1 = 2n(n+ 1)/(n− 1)

Note that f(ξ0) = 0, and hence ξ = ξ0(n) describes the
advance of the flux front.
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FIG. 1. NormalizedB-profiles obtained by numerical simu-
lations for a slab described by Eq. (4) with n = 3 and n = 11.
The profiles, which are plotted in the scaling variable ξ de-
fined in Eq. (8), correspond to five different times after a step
has occured in Ba. The collapse among the curves agrees fully
with our analytical solution.

Shown in Fig. 1 are simulated profiles of the flux den-
sity B(ξ) in a slab using n = 3 and n = 11. Both graphs
contain five curves corresponding to different points in
time t between 5τ and 104τ , where τ = B2

a/(µ0jcEEc).
Notice the Bean model like linearity in the profiles for
n = 11, and the clear non-linearity for n = 3. Shown
together with these curves is also the analytic solution
f(ξ), given by Eq. (9). The collapse within each family
of curves demonstrates an excellent agreement, and gives
confidence in the numerical procedures.

B. Slab with a transport current

In the following we present simulation results assum-
ing that a transport current, linearly increasing in time,
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is passed through an initially zero-field-cooled supercon-
ductor. The choice of parameters is dJT/dt = 10−3jcvc
where JT (t) =

∫ w
−w j(x, t) dx is the transport current per

unit height, jc ≡ jcU = jcE , and Uc/kT = n = 5. More-
over, we let Ec = 0.2vcµ0jcw, which gives approximately
the same average electric field in the superconductor for
both the flux creep and E − j approach.
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FIG. 2. Temporal evolution of current and flux density dis-
tribution in a slab with an increasing transport current. The
graphs are obtained using the flux creep approach. The pro-
files correspond to currents JT/Jc = 0.07, 0.14, 0.20, 0.27,
0.29, where Jc = 2wjc. The dotted line marks the edge of the
superconductor. Arrows indicate the direction of time.

Figures 2 and 3 present the time development of the
current and flux density distributions in the case of a
slab.10 In the flux penetrated region, which gradually ex-
pands from the edges, both approaches lead to B-profiles
that are essentially linear, and a fairly constant current
density. The slab has a central region where both B and
j vanish. As JT (t) increases, the flux penetrates deeper,
and the current becomes distributed more uniformly. Al-
though the overall behavior resembles that of the Bean
model, one can also see clear deviations, in particular in
the current distributions.

The results also reveal distinct differences between the
two approaches. The most prominent one is seen in the

j-distribution, where in the flux creep approach a peak
develops in the center as the slab becomes fully pene-
trated. Another difference is visible near the edges, where
the slopes in j(x) are significantly larger in the E − j
model. Both of these features are also reflected in the B-
distributions, although there only as different curvatures
of the profiles.

Subsequent increase in the transport current (not
shown in figures) does not change significantly the shape
of distributions. In the E − j approach, the current den-
sity tends to become completely uniform. In the flux
creep approach, the peak in the center retains, and both
j(x) and B(x) increase monotonously as grows the trans-
port current, JT .
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FIG. 3. Same quantities as shown in Fig. 2 only here cal-
culated using the E− j approach, and evaluated for JT/Jc =
0.06, 0.13, 0.21, 0.26, 0.30.

C. Strip with a transport current

The simulated behavior of a thin strip experiencing a
linearly increasing transport current IT , is shown in Fig-
ures 4 and 5. The choise of parameters is the same as for
the slab, with dIT /dt = 10−3jcvcd except now it requires
that Ec = 0.2vcµ0jcd/π, in order to give approximately
the same average electric field for both the flux creep and
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the E− j approach. Comparing the results with the pre-
vious slab case, one immediatlely sees differences in the
shape of the profiles. The j(x) in a strip is always finite
everywhere even at small currents, where the flux pen-
etration is only partial. Furthermore, B(x) is strongly
nonlinear and has peaks at the edges. Both these fea-
tures are well known also in the Bean model behavior for
a thin strip.11,12
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FIG. 4. Temporal evolution of flux and current density dis-
tribution in a thin strip with an increasing transport current.
The flux creep approach is used to calculate the graphs. The
profiles correspond to the current values IT/Ic = 0.10, 0.18,
0.24, 0.28, 0.31, 0.33, where Ic = 2wd jc. The dotted line
marks the edge of the superconductor. Arrows indicate the
direction of time.

As in the slab case, we observe also here a significant
difference between the distributions obtained from the
flux creep and the E − j approach. Firstly, the two ap-
proaches give opposite sign for the slope of j(x) in the
penetrated regions near the edges. Secondly, only the
creep approach leads to a central peak in j(x) at large
currents. Hence, while in the E−j approach the j(x) re-
mains concave throughout, the creep approach predicts a
gradual change from a concave to a convex profile. Con-
trary to the case of a slab, differences are also clearly
seen in the flux distributions. In particular, the creep ap-

proach predicts a much steeper slope near the flux front.
Interestingly, we found that although the two ap-

proaches lead to quite different spatial distributions, the
integral characteristics of the strip, such as current-
voltage curves, are only weakly sensitive to the differ-
ences. This is demonstrated in Fig. 6, which shows the
integral current-voltage curves obtained using both ap-
proaches. The curves for n = 5 correspond to the j-
distributions shown in the previous figures. The electric
field was determined as P/IT , where the dissipated power
P per unit length of the strip was calculated by integrat-
ing the product j(x)E(x) over the strip cross-section.11
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FIG. 5. Same quantities as shown in Fig. 4 only here cal-
culated using the E − j approach, and evaluated for IT /Ic =
0.08, 0.14, 0.20, 0.26, 0.32, 0.35.

In the log-log plot the current-voltage curves display
a clear crossover at E ≈ 0.002Ec. At large currents the
integral E(j) curve shows a power law behavior E ∝ jn′ ,
where n′ is an “integral” exponent. We find that n′

slightly exceeds Uc/kT in the flux creep approach. In
the E − j approach n′ is equal to the “local” exponent
n and the integral E(j) curves merge the local E(j)’s
shown by straight lines. At small currents the integral
E(j) curve also shows a power law behavior, although
with a much smaller n′ which seemingly does not depend
on n or Uc/kT .
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D. Discussion

Both approaches describe the same physical situation:
in response to the transport current the flux lines enter
the sample from the edge and then move some distance
before getting pinned or annihilated in the sample’s cen-
ter. Thus, near the edges the flux motion is always more
pronounced. Consequently, E has a maximum there. In
the E − j approach, the local current density is an ex-
plicit function of the local electric field. Therefore, j(x)
follows E(x) and monotonously decreases from the edges
towards the center. On the other hand, in the flux creep
approach, j(x) is related to v(x) = E(x)/B(x) by Eq. (2),
and, hence depends also on the flux distribution. In par-
ticular, j(x) is relatively small at the strip edges where
|B| is maximal, see Fig. 4(a).

1E-3

0.01

0.1

0.2 0.60.4

n = 5
n = 15E

 / 
E

c

j / j
c

FIG. 6. Current-voltage curves for a strip obtained by nu-
merical simulations in the flux creep approach (solid line) and
in the E− j approach (dashed line). Results for two different
n = Uc/kT are shown. Straight lines show the local E(j)
curve for the E − j approach, Eq. (4).

IV. EXPERIMENTAL RESULTS AND
DISCUSSION

A YBa2Cu3O7−δ (YBCO) film of 200 nm thickness
was prepared by dc magnetron sputtering on LaAlO3

substrate.13 Using photo-lithography a strip of dimen-
sions 500×100 µm2 was formed and equipped with Ag
contact pads for injection of a transport current. The
current was applied in pulses of 40 ms duration while
the temperature was kept at 20 K in an optical cryostat.
Magneto-optical images were recorded with 33 ms expo-
sure time during the current pulse. From the images we
determine the z-component of B in the plane of the fer-
rite garnet magneto-optical indicator, which we estimate
to be located 10 µm above the YBCO film.

Shown in Fig. 7(a) are the measured B-distributions.
Because of the finite distance between the indicator and
the superconductor, these profiles are not easily com-
pared to the results of the simulations. However, since

the j-profiles showed more distict differences between the
creep and E − j approach, the measured B-profiles were
converted to sheet current distributions, J(x) = dj(x), in
the strip. An inversion scheme described in Ref. 14 and
further developed elsewhere15 was employed.
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FIG. 7. (a) Flux density distributions in a thin YBCO strip
carrying transport currents up to 4.5 A. The measurements
were obtained using magneto-optical imaging. (b) Sheet cur-
rent distributions inferred by inversion of the B(x) profiles.

Profiles of the sheet current are shown in Fig. 7(b)
for a range of transport currents up to 4.5 A. Evidently,
they fit quite well to the simulated results of the creep
approach shown in Fig. 4. In particular, one easily recog-
nizes the characteristic change from a concave to a convex
current distribution as IT increases. The E−j approach,
on the other hand, appears not to be able to give an ad-
equate description of the flux dynamics in the present
experiment.

Although being the better model, one can still see con-
siderable discrepancies between the experimental curves
and the flux-creep approach simulations. One example
is the peak of j(x) in the strip center at large currents,
a feature the experiments could not reproduce. Unfor-
tunately, a current of 4.8 A caused fatal damage to the
sample, and we were not able to measure distributions
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under the conditions where a central peak might become
apparent.
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FIG. 8. Sheet current (solid lines) and the flux density
(dashed lines) distributions in a thin strip: experiment (a)
and simulations in the flux creep approach (b) and simula-
tions in the E − j approach (c). The strip was first exposed
to a very high magnetic field which subsequently was reduced
to zero. After that a transport current of 2 A was applied.
The experimental data were obtained from magneto-optical
images of a YBCO strip.

As an alternative way to create a peak in J where B

changes sign, we carried out a different experiment. Here
the strip (a new YBCO sample prepared by the same
method) was initially in the remanent state after first
being exposed to a very high magnetic field. After that
the strip was subjected to a transport current of 2 A.
The resulting flux and current distributions are shown in
Fig. 8(a). One sees that in the left half of the strip there
is a wide region with a large and nearly constant current
density. Within this region one finds that J(x) indeed
has a peak located close to the point where B = 0.

A new set of simulations was made for this special state
with combined magnetization currents and IT . The simu-
lations aimed to reproduce the exact experimental steps:
First, the strip was exposed to a perpendicular magnetic
field applied as a pulse of 70 mT amplitude with 1 s of lin-
ear increase and 1 s of linear decay. Then, after one more
second, the strip was subjected to a transport current
pulse with 1 ms rise time. During the current pulse, 20 ms
after turn-on, the magneto-optical image was taken. For
this particular time, Figs. 8(b) and (c) present the numer-
ically obtained distributions for the flux creep approach
and E − j approach, respectively. The following model
parameters were used: n = Uc/kT = 5, Ic = 25 A, and
vc = 10 m/s. Again, only the flux creep approach gives a
peak in the current profile, and now we find an excellent
agreement with the experimental results.

A remaining discrepancy between the flux-creep ap-
proach simulations and the experimental curves is that
the gradient of J(x) near the strip edge is larger in the
experiments. This holds true also for simulations made
with other values of the power Uc/kT . We believe that
our photo-lithographic technology does not reduce the
film quality much more than up to a distance 1-2 µm
from the edge. This is also consistent with the magneto-
optical images, which show that the current flow along
the strip is highly uniform on scales larger than 5 µm.
Therefore, the discrepancy between experiment and sim-
ulations indicates that the vortex behavior is more com-
plicated than assumed in the present flux creep model.
The experimentally observed suppression of J near the
edge where |B| is maximal, can be interpreted as a |B|-
induced reduction of the critical current density jcU , or
the pinning energy Uc. This interpretation, however, fails
to account for a similar suppression of J observed pre-
viously in the remanent state after current pulse.16 An
alternative explanation able to cope with both observa-
tions is a heat dissipation due to vortex motion which is
always most intensive near the strip edges.

V. CONCLUSIONS

Numerical simulations have been carried out in order
to compare two commonly accepted approaches for anal-
ysis of flux motion in superconductors; (i) the flux creep
approach, and (ii) the approach based on a non-linear
E(j) curve. We have shown that if the critical cur-
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rent density is field-independent, these approaches pre-
dict similar but also distinctly different current and flux
distributions. The difference is most pronounced in the
regions where the local flux density B is small. The sim-
ulation results were compared with the real current dis-
tributions in a YBCO strip carrying a transport current.
The experimental data were obtained by using magneto-
optical imaging. The comparison shows clearly that the
flux creep approach provides the better description of the
flux motion in the strip.
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