Диагностика дефектов в твердых телах методом ЭПР

Бадалян А.Г.

Расщепление энергетических уровней электрона в магнитном поле и явление резонанса

Условие наблюдения сигнала магнитного резонанса – Н₀ перпендикулярно H₁(t)

И. Раби – открытие явления ядерного магнитного резонанса в молекулярных пучках - 1938 г.
Евгений Константинович Завойский – открытие электронного парамагнитного резонанса – 1944г.
Ф. Блох и Э.М.Парселл зарегистрировали ядерный магнитный резонанс в жидкостях и твёрдых телах - 1946 г.

Евгений Константинович Завойский

Парамагнетизм частиц складывается из орбитального и спинового моментов неспаренных электронов. Кроме того, в среде на эти электроны действуют сильные электрические поля окружающих ионов (лигандов).

Описание спектров ЭПР — сложная задача.

Для расчёта спектров ЭПР А. Абрагам (Франция) и X. М. Л. Прайс (США) в 1951 г. предложили полуэмпирический метод спинового гамильтониана. Он состоит в том, что энергия парамагнитной частицы в магнитном поле складывается из суммы всех взаимодействий, которым она подвержена.

Общий гамильтониан «свободного иона» $\mathcal{H} = V_F + V_{LS} + V_{SS} + V_N + V_O + V_H + V_h.$

 $V_{F} = \sum_{k=1}^{N} \left(\frac{\mathbf{p}_{k}^{2}}{2m} - \frac{Ze^{2}}{\mathbf{r}_{k}} \right) + \sum_{k>j=1}^{N} \frac{e^{2}}{\mathbf{r}_{kj}}; \quad - \text{ описывает взаимодействие с зарядом ядра и взаимное отталкивание электронов}$

$$V_{LS} = \sum_{jk} (a_{jk} \mathbf{l}_j \cdot \mathbf{s}_k + b_{jk} \mathbf{l}_j \cdot \mathbf{l}_k + c_{jk} \mathbf{s}_j \cdot \mathbf{s}_k),$$

 $V_{SS} = \sum_{jk} \left(\frac{\mathbf{s}_j \cdot \mathbf{s}_k}{r_{jk}^3} - \frac{3\left(\mathbf{r}_{j\mathbf{k}} \cdot \mathbf{s}_j\right)\left(\mathbf{r}_{j\mathbf{k}} \cdot \mathbf{s}_k\right)}{r_{jk}^5} \right) \cdot \qquad -$ спин-спиновое взаимодействие – 1-ый член взаимодейст $V_{N} = 2\gamma\beta\beta_{N} \left[\sum_{k} \left\{ \frac{(\mathbf{l}_{k} - \mathbf{s}_{k}) \cdot \mathbf{l}}{r_{k}^{3}} + \frac{3(\mathbf{r}_{k} \cdot \mathbf{s}_{k})(\mathbf{r}_{k} \cdot \mathbf{l})}{r_{k}^{5}} \right\} + \frac{3(\mathbf{r}_{k} \cdot \mathbf{s}_{k})(\mathbf{r}_{k} \cdot \mathbf{l})}{r_{k}^{5}} \right] + \frac{8\pi}{3}\delta(r_{k})(\mathbf{s}_{k} \cdot \mathbf{l}) \right],$

- взаимодействие между электронными спинами **s**_k и орбитальными моментами **I**_k

— 1-ый член взаимодействие ядерного ядерным спином

$$V_{Q} = \frac{e^{2}Q}{2I(2I-1)} \left[\sum_{k} \frac{I(I+1)}{r_{k}^{3}} - \frac{3(\mathbf{r_{k}} \cdot \mathbf{I})^{2}}{r_{k}^{5}} \right]$$

- электростатическое взаимодействие с квадрупольным моментом ядра

 $V_{H} = \sum_{k} \beta (\mathbf{l}_{k} + 2\mathbf{s}_{k}) \cdot \mathbf{H}_{-}$ взаимодействие с внешним магнитным полем - взаимодействие ядра с магнитным полем $V_{h} = -\gamma \beta_{N} \mathbf{H} \cdot \mathbf{I}$

$$\widehat{\mathscr{H}}_{S} = \beta \mathbf{H} \cdot \mathbf{g} \cdot \widehat{\mathbf{S}} + \widehat{\mathbf{S}} \cdot \mathbf{D} \cdot \widehat{\mathbf{S}} + h\widehat{\mathbf{S}} \cdot \mathbf{A} \cdot \widehat{\mathbf{I}} - g_{N}\beta_{N}\mathbf{H} \cdot \widehat{\mathbf{I}}.$$

Эффективный спин-гамильтониан

$$A_0 = \frac{2\mu_0}{3} g\beta_e \beta_n |\psi(0)|^2$$

Константа контактного сверхтонкого взаимодействия (формула Ферми)

$$\begin{aligned} \mathscr{H} &= \beta \left(g_{x} S_{x} H_{x} + g_{y} S_{y} H_{y} + g_{z} S_{z} H_{z} \right) + \\ &+ D \left[S_{z}^{2} - \frac{1}{3} S \left(S + 1 \right) \right] + E \left(S_{x}^{2} - S_{y}^{2} \right) + \\ &+ A_{z} I_{z} S_{z} + A_{x} I_{x} S_{x} + A_{y} I_{y} S_{y}. \end{aligned}$$

 $\mathcal{H}_{akc} = \beta \left[g_{\parallel} S_{z} H_{z} + g_{\perp} (S_{x} H_{x} + S_{y} H_{y}) \right] + D \left[S_{z}^{2} - \frac{1}{3} S (S+1) \right] + A_{\parallel} I_{z} S_{z} + A_{\perp} (I_{x} S_{x} + I_{y} S_{y}).$

Схема спектрометра ЭПР

Стандартные диапазоны микроволновых частот в ЭПР спектроскопии и значения магнитных полей, соответствующих переходу с g=2.0

Band	Frequency	λ	B ₀ (g=2)
L	1 GHz	30 cm	36 mT
С	3 GHz	10 cm	0.1 T
Х	10 GHz	3 cm	0.35 T
K	24 GHz	1.25 cm	0.86 T
Q	35 GHz	8.5 mm	1.25 T
V	70 GHz	4.3 mm	2.5 T
W	94 GHz	3 mm	3.4 T

Объекты, исследуемые методом ЭПР, все парамагнетики

- Радиационные дефекты в веществе, свободные радикалы, центры окраски.
- Переходные и редкоземельные элементы с незаполненными d и f оболочками
- Доноры и акцепторы в полупроводниках
- Спиновые метки в биологии
- Возбужденные состояния дефектов, в которых основное состояние не парамагнитное, и прочее

Анализ спектров ЭПР дает возможность :
1) идентифицировать элемент, его валентное состояние и конфигурацию
2) определить симметрию кристаллического поля
3) определить численные значения параметров спин-гамильтониана.

Элементы с незаполненными внутренними оболочками

Переходные элементы

TE2+	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
3d	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn
4d	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
5d		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg

Редкоземельные элементы

RE3+	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14
4f	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
5f	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Ионы с незаполненными внутренними оболочками

Ионы переходной группы, редкоземельные и актиноиды, входящие в 3d, 4d,5d, 4f и 5f-группы, были предметом целого ряда исследований ЭПР.

Комплексы ионов переходных металлов и их соли сыграли ключевую роль во многих аспектах ЭПР, включая разработку концепции спинового гамильтониана. Их важность была основана на том, что:

1. они имеют различное количество неспаренных электронов в каждом виде ионов, и суммарный спин может меняться S от 0 до 7/2

2. как правило, соединения, содержащие эти ионы, обладают простой локальной симметрией (например, кубической), и понятным окружением центрального иона. Последовательность энергетических уровней иона при взаимодействии его с кристаллическим полем можно предсказать исходя из симметрии поля. Метод ЭПР рассматривает самые низко расположенные уровни, заселенность которых определяется распределением Больцмана.

3. Простота приготовления и стабильность, а также возможны различные степени окисления.

4. Наличие разумно применимой модели кристаллического поля.

Соотношение между энергиями взаимодействия с кристаллическим полем и спин-орбитальным взаимодействием имеет решающее значение. Энергия зеемановского взаимодействия находится в конце этого ряда взаимодействий.

Рассматривают три случая: слабого, среднего и сильного кристаллических полей.

Слабое поле – редкоземельные ионы и актиноиды. Взаимодействие с кристаллическим полем значительно слабее спин-орбитального. 4f- и 5fэлектроны экранируются другими электронами. В большинстве исследованных случаев ионы 4f- находятся в полях тригональной симметрии. Из-за сильного взаимодействия *L* и *S* появляется результирующий момент J. Необходимо рассмотреть порядок расположения 2J+1 состояний Мј. Расщепление, обусловленное спин-орбитальным взаимодействием, имеет величину порядка 5000 см-1, тогда как расщепление для состояний Мјприблизительно 100см-1. В кристаллическом поле состояния Мј расщепляются на дублеты +/-*Мј* и синглет, если *Ј* – целое число. Так как расщепление +/-Мј небольшое, то магнитная восприимчивость для большинства редкоземельных ионов в кристаллическом поле практически не отличается от таковой для ионов в свободном состоянии.

Среднее поле.

энергия взаимодействия электронов с кристаллическим полем

больше энергии спин-орбитального взаимодействия.

Для 3dⁿ электронов спин-орбитальное взаимодействие

составляет

50 - 850 cm⁻¹

расщепление, вызванное кристаллическим полем - 10⁴ см⁻¹ Расщепление орбитальных состояний столь велико, что заселены только самые нижние уровни Магнитная восприимчивость определяется только спиновым

моментом.

Сильное поле.

3d электроны образуют ковалентную связь с диамагнитными лигандами

Уже в первом приближении следует учитывать электроны лигандов.

Центры окраски

H. SEIDEL AND H. C. WOLF

Нецентральные О⁻ центры в кристаллах ⁸⁷RbCl и ⁸⁵RbCl

ные при 13 К; В|[100], v=9250 МГц, и схема О- центра (в).

37	Rb ⁸⁵	72.17	5/2	1.44402	0.541253	1.47218 x 10 ⁻⁴
	Rb ⁸⁷	27.83	3/2	4.89369	1.83427	4.98912 x 10 ⁻⁴

$$\mathcal{H} = g_{\parallel} \beta H_z S_z + g_{\perp} \beta \left(H_x S_x + H_y S_y \right) + A_{\parallel}^{1} I_z^{1} S_z + A_{\perp}^{1} \left(I_x^{1} S_x + I_y^{1} S_y \right) + \\ + \sum_{i=2}^{5} \mathbf{SA}_i \mathbf{I}^i + A_{\parallel}^{6} I_z^{6} S_z + A_{\perp}^{6} \left(I_x^{6} S_x + I_y^{6} S_y \right) + \sum_{j=1}^{4} \mathbf{SA}_j I^j,$$

где S = 1/2; $I^i - ядерный спин$ *i*-го иона рубидия (рис. 1,*в* $); <math>A_i -$ тензор, характеризующий ССТВ неспаренного электрона с ядром *i*-го иона рубидия; $A_j -$ то же для *j*-го иона Cl⁻. Параметры спин-гамильтониана для иона O⁻ в RbCl приведены в таблице.

Кристалл	g	g T	$\begin{vmatrix} A'_{\parallel}, \\ 10^{-1} T \end{vmatrix}$	$A'_{\perp}, 10^{-4} T$	$A_{\parallel}^{2-5},$ 10 ⁻⁴ T	$A_{\perp}^{2-5},$ $10^{-4} T$	10 ⁴⁶ , 10 ⁻⁴ T	A ^{C1-} , 10 ⁻⁴ T
⁸⁷ RbCl	1.983	2.174	68	37	6.9	7.1	0.40	0.18
⁸⁵ RbCl		2.174		11		2.1	0.12	0.18

Ионы Ni²⁺ в кристалле NaCl

Ni²⁺ - электронная конфигурация d⁸ (³F₄)

В поле выше 10000 Гс, при температуре ниже 40 К наблюдаются два типа спектров, соответствующих двум центрам Ni²⁺, с катионной вакансией: а) по <110>, б) по <100>

Структура линии аксиального центра

- I 4 узла заняты ионами ³⁵CI : 81/256
- II 4 узла заняты ³⁷CI : 1/256
- III 3 узла заняты ³⁵СІ и 1 занят ³⁷СІ : 108/256
- IV 1 узел занят ионом ³⁵Cl, 3 узла заняты ³⁷Cl : 12/256
- V 2 противоположных узла заняты ³⁵СІ и
 - 2 противоположных узла заняты ³⁷Cl :18/256
- VI 2 соседних узла заняты ³⁵Cl,

2 соседних узла заняты ³⁷Cl : 36/256 x, y - // [110] (I), (II), (VI) — центральная линия. (III) — 2 линии, (V) — 2 линии, (IV) — слабый сигнал

Обменные взаимодействия

1-ый предельный случай

Два идентичных иона в пределе слабого взаимодействия

В ЭПР наблюдаются спектры отдельных ионов.

2-ой предельный случай:

основное состояние – синглет, триплет термически заселен.

Связь называется антиферромагнитной.

3-ий предельный случай:

Основное состояние – триплет, синглет термически заселен.

Связь называется ферромагнитной

Спиновый гамильтониан обменных взаимодействий

Два иона с орбитальноневырожденными состояниями. В общей форме:

 $\hat{H} = \sum_{ij} J_{ij} \,\hat{S}_i \,\hat{S}_j.$

Здесь J_{ij} обменные операторы, i, j = x, y, z. Тензор Раскладывают на две части: симметричный тензор и ассиметричный

$$J_{ij}^{c_{MM}} = \frac{1}{2} (J_{ij} + J_{ji}) \qquad \qquad J_{ij}^{ac} = \frac{1}{2} (J_{ij} - J_{ji})$$

Выделяют изотропную часть **J** и, после некоторых преобразований получают: $\hat{H} = J\hat{S}_1\hat{S}_2 + \hat{S}_1 \{D_{of}\}\hat{S}_2 + G_{of}[\hat{S}_1 \times \hat{S}_2]$

первое слагаемое – изотропный обмен, второе – анизотропный обмен, третье - антисимметричный Изотропное взаимодействие расщепляет состояния кластера на триплет и синглет

$$\hat{H} = \{g\}\beta H\hat{S} + D[\hat{S}_z^2 - \frac{1}{3}S(S+1)] + E(\hat{S}_x^2 - \hat{S}_y^2),$$

где
$$D=1/_2 D_e$$
; $E=1/_2 E_e$

Задача о характере расщеплений триплета димерного кластера совпадает с задачей о тонкой структуре спектра ЭПР ионов с *S* = 1. Для разрешенных переходов для ΔM =1

$$| 0 \rangle \longleftrightarrow | + \rangle, \quad h\nu = D + (g_z^2 \beta^2 H_{z1}^2 + E^2)^{1/2}, \quad I = \frac{1}{2} g_x^2 (1 + \sin 2\alpha),$$

 $| - \rangle \longleftrightarrow | 0 \rangle, \quad h\nu = -D + (g_z^2 \beta^2 H_{z2}^2 + E^2)^{1/2}, \quad I = \frac{1}{2} g_x^2 (1 - \sin 2\alpha),$

Сверхтонкие взаимодействия в димерах

В спин гамильтониан для димера добавим член, учитывающий сверхтонкое взаимодействие

$$\hat{H}_{cT} = \hat{\mathbf{S}}_1 \{A_1\} \hat{\mathbf{I}}_1 + \hat{\mathbf{S}}_2 \{A_2\} \hat{\mathbf{I}}_2, \quad \{A_1\} = \{A_2\}$$

$$J \gg A_i \qquad \hat{H}_{cT} = \frac{1}{2} \,\hat{\mathbf{S}}[A_1] \,(\hat{\mathbf{I}}_1 + \hat{\mathbf{I}}_2) = \hat{\mathbf{S}}[A] \,(\hat{\mathbf{I}}_1 + \hat{\mathbf{I}}_2).$$

Учет взаимодействия приводит к расщеплению каждого электронного перехода на компоненты, смещенные относительно центра на величину: $1/2 A_z (m_i + m_j)$,

 $Cu(II) - Cu(II) \ c \ I_1 = I_2 = 3/2$

каждый переход расщепляется на 7 равноотстоящих линий с относительными интенсивностями 1:2:3:4:3:2:1

EPR of copper ions in the KTaO₃ single crystal

Perovskite structure (ABO₃)

Divalent Cu²⁺ has electronic configuration – $3d^9$, substitutes for Ta⁵⁺ and oxygen vacancies are required to neutralize the extra charge of Ta⁵⁺. Electron spin S=1/2, Two stable isotopes ⁶³Cu(69.2%) and ⁶⁵Cu (30.8%), with the same nuclear spin I=3/2

Спектр ЭПР одиночных ионов Cu²⁺ в кристалле КТаО₃

The spectrum is well described by spin Hamiltonian for axial centres

$$\hat{H} = \mu_{\mathcal{B}} \mathbf{B} \cdot \overleftrightarrow{g} \cdot \mathbf{S} + \mathbf{S} \cdot \overleftrightarrow{A} \cdot \mathbf{I} + \sum_{i=1}^{N} \mathbf{S} \cdot \hat{a}_{i} \cdot \mathbf{I}_{i},$$

Величины g-факторов указывают на то, что ионы Cu²⁺ находятся в состоянии |x² – y²>. Это означает, что октаэдрическое окружение удлиняется вдоль тетрагональной оси.

Суперсверхтонкая структура одного из переходов одиночных ионов Cu²⁺

Суперсверхтонкая структура одного из переходов одиночных ионов Cu²⁺ 29 линий (2*4*7/2 +1) означает взаимодействие с 4-мя ионами Ta⁵⁺, расположенными в плоскости, перпендикулярной оси центра. Видна структура второго цента.

Exchanged coupled pair of copper ions in the KTaO₃ single crystal

Q-band EPR spectrum of exchange-coupled pair copper centres in KTaO₃, 35 GHz, 300K, B// [100]

For an axial system with spin S=1, the spin Hamiltonian is given by

$$H = \mu_{\rm B} B \ddot{g} S + D \left(S_z^2 - \frac{1}{3} S(S+1) \right) + S \frac{\ddot{A}}{2} \left(I_1 + I_2 \right) + \sum_{i=1}^N S \frac{\ddot{a}_i}{2} I_i$$

Energy level diagrams for triplet due to axial dimmers.

Спектры ЭПР центров меди в кристалле танталата калия, зарегистрированные в Х диапазоне.

Figure 4. EPR spectra of copper centres in the X band (T = 300 K, v = 9.3 GHz) for two different magnetic field orientations (a) $B \parallel [110]$, and (b) $B \parallel [100]$. Forbidden transitions are also shown in the insert.

Angular dependence of the exchange-coupled copper pair

Figure 5. Angular dependence of $Cu^{2+}-Cu^{2+}$ pair with sample rotating about the (110) axis. Dots, experimental data; lines, calculation.

Centre	81	g_{\perp}	$D (10^{-4} \text{ cm}^{-1})$	$A_{\parallel} (10^{-4} \text{ cm}^{-1})$	$A_{\perp} (10^{-4} \text{ cm}^{-1})$	a_i (mT)
Cu ²⁺ (1)	2.24	2.04	_	173	30	0.28
Cu ²⁺ (2)	2.20	2.04	_	193	33	0.32
Cu ²⁺ –Cu ²⁺	2.22	2.04	420–455 ^a	91	15	0.15

- 1. There are exist two of single centres and only one of pair centre
- 2. The pair centre SH parameters are equal to average of corresponding SH parameters of single centres

$$g_{\parallel} = \frac{g_{\parallel}^{1} + g_{\parallel}^{2}}{2}, \quad g_{\perp} = \frac{g_{\perp}^{1} + g_{\perp}^{2}}{2}, \quad A_{\parallel} = \frac{A_{\parallel}^{1} + A_{\parallel}^{2}}{4}, \quad A_{\perp} = \frac{A_{\perp}^{1} + A_{\perp}^{2}}{4}$$

- 3. Two oxygen vacancies are necessary for full compensation of extra charge
- 4. All copper centres have axial symmetry and the symmetry axis is directed to [100]

Модели парного и одиночных центров меди в кристалле КТаО₃

Figure 6. (a) Model of copper centres in KTaO₃ single crystal for $Cu^{2+}-Cu^{2+}$ pairs and (b) $Cu^{2+}(1)$ and $Cu^{2+}(2)$ centres. \bullet , copper; O, oxygen; small grey circles, tantalum; big grey circles, potassium; \blacksquare , oxygen vacancy.