CO₂-LASER INDUCED STRUCTURE CHANGES IN PZT SOL-GEL FILMS

<u>M. Knite¹, L. Shebanovs², G. Mezinskis³, I. Pedaja³, and A. Sternberg² ¹Technical Physics Institute, Riga Technical University, Riga, LV-1048 ²Institute of Solid State Physics, University of Latvia, Riga LV-1063 ³Institute of Silicate Materials, Riga Technical University, Riga, LV-1048</u>

Ferroelectric thin films are still of interest as promising materials for miniature electro-optic modulators, pyroelectric detectors, piezoelectric sensors, electronic memory elements and for integration of these elements in VLSI. Ferroelectric lead zirconite-titanate $Pb(Zr_XTi_{1-X})O_3$ (PZT) is known for relatively high values of spontaneous polarisation and relative dielectric permeability. Traditional thermal treatment (electric furnace or powerful source UV irradiation) of PZT sol-gel films has problems in case of micro-composites. It does not allow local treatment of selected layers of the composites. Localised and non-destructive treatment of the surface is possible by focused laser beam or electron beam of sufficient energy. The main advantage of laser processing is selection of separate layers of a multi-layered microcomposite for treatment by choosing a suitable wavelength. Recently pulsed eximer lasers ArF ($\lambda = 193$ nm), XeF ($\lambda = 351$ nm) and XeCl ($\lambda = 308$ nm) have been used to crystallise PZT sol-gel thin films. Because the fundamental ion absorption edge of PZT layer starts at $\lambda > 6 \ \mu m$ the CO₂ laser ($\lambda = 10.4 \ \mu m$) can also be used for thermal treatment of PZT films. Since materials used in microelectronics, such as Si, Ge, GaAs, are relatively transparent at $\lambda = 10.4 \mu m$, the CO₂ laser may be preferable. It means that it would be possible to heat the PZT film without heating the Si substrate. CO₂ laser induced transition from pyrochlore structure to the ferroelectric perovskite structure of the PZT sol-gel layer has been realised. We are going to investigate the laser treated surface of PZT film by means of atomic force microscopy.