Boron nitride (BN) has at least four crystal modifications of BNw
(wurtzite structure), BNcub (cubic BN, zinc blende structure), BNhex
(hexagonal BN), and rhombehedral. The properties of the first three (more common)
modifications are presented.
BNhex is stable under normal conditions. BNhex (Hexagonal,
also known as a-BN) with the structure similar to
graphite is known for more than a century. Many properties of hexagonal BN are
highly anisotropic and depend on the growth method. In many cases, the different
values of BNhex physical parameters given reflect the differences
in material properties of hexagonal BN grown by different methods.
BNcub is metastable under normal conditions. BNcub (Zinc
blende modification , also known as cubic or sphalerite or b-BN)
was first synthesized in 1957 using the technique similar to that used for diamond
growth. Now crystals with a few millimeter sizes are commercially available.
The BNw phase is metastable under all conditions. BNw
(Wurtzite structure, also known as g-BN) was first
synthesized in 1963. Typically, BN crystals with wurtzite symmetry are very
small (fraction of microns), are highly defective, and contain other phases.
Basic Parameters for Zinc Blende crystal structure
Basic Parameters for Hexagonal crystal structure
Basic Parameters for Wurtzite crystal structure
Remarks | Referens | ||
Crystal structure | Zinc Blende | ||
Group of symmetry | T2d F43m | ||
Number of atoms in 1 cm3 | |||
Debye temperature | 1700 K | ||
Density | 3.4870 g cm-3 3.450 g cm-3 |
X-ray |
Soma et al. (1974) Rumyantsev et al. (2001) |
Lattice constant, a | 3.6157(10) A | X-ray | Sohno et al. (1974) |
Melting point, Tm | 2973° C | Wentorf (1957) | |
Bulk modulus | 400 GPa | 300 K | |
Hardness | 9.5 | on the Mohs scale | |
Surface hardness | 4500 kg mm-2 | 300 K | |
Second order elactic moduli, c11 | 7.120 ·1012 dyn cm-2 | 300 K, interpolated from measured values of other III-IV compound |
Steigmeier (1963) |
Phonon wevenumber vLO | 1305(1) cm-1 | 300 K, Raman | Sanjurjo et al. (1983) |
Phonon wevenumber vTO | 1054.7(6) cm-1 | 300 K, Raman | Sanjurjo et al. (1983) |
![]() |
Brillouin zone of the face centered cubic lattice, the Bravais lattice of the diamond and zincblende structures. |
Remarks | Referens | ||
Energy gaps, Eg |
6.1÷6.4 eV | 300 K | Rumyantsev et al. (2001) |
Energy gaps, Egind G15v-X1c |
6.4(5) eV | 300 K, UV absorption; other data in range 6...8eV |
Chrenko (1974) |
6.99 eV 8.6 eV |
calculated, Band structure calculated, Band structure |
Huang & Ching (1985) Prasad & Dubey (1984) |
|
Energy gaps, Eg,dir G15v-G1c |
14.5 eV 10.86 eV 9.94 eV |
300 K, reflecsivity calculated, Band structure calculated, Band structure |
Philipp & Taft (1962) Prasad & Dubey (1984) Huang & Ching (1985) |
Effective electron mass ml | 0.752 mo | calculated from band structure data |
Huang & Ching (1985) |
Effective electron mass (longitudinal) ml (transversal) mt |
0.35mo 0.24mo |
1.2mo 0.26mo |
Xu & Ching et al. (1991) |
Effective hole masses (heavy) mh | 0.375 mo 0.962 mo |
|| [100] || [111] |
Madelung (1991) |
Effective hole masses (heavy) mlp | 0.150 mo 0.108 mo |
|| [100] || [111] |
Madelung (1991) |
Effective hole masses mh in the direction G ![]() |
m1 ~=3.16 m2 ~=0.64 m3 ~=0.44 |
300 K | Xu & Ching et al. (1991) |
in the direction G
![]() |
0.55mo | 300 K | Xu & Ching et al. (1991) |
in the direction G
![]() |
m1 ~=0.36 m2 ~=1.20 |
300 K | Xu & Ching et al. (1991) |
Electron affinity | 4.5 eV | 300 K | Rumyantsev et al. (2001) |
Remarks | Referens | ||
Dielectric constant (static) | 7.1 | 300 K, infrared reflectivity | Gielisse et al.(1967) |
Dielectric constant (high frequency) | 4.5 4.46 |
300 K, infrared reflectivity | Gielisse et al.(1967) Rumyantsev et al. (2001) |
Refractive index, n | 2.17 | 300 K, wavelegth 0.589mm |
Gielisse et al.(1967) |
Optical phonon energy | ~130 meV | 300 K |
Rumyantsev et al. (2001) |
Bulk modulus | 400 GPa | ||
Debye temperature | 1700 K | ||
Melting point, Tm | 2973° C | also see Termal properties. Phase diagrams. |
Wentorf (1957) |
Specific heat | ~0.6 J g-1°C -1 | ||
Thermal conductivity experimentally achieved |
7.4 W cm-1 °C -1 |
||
theoretically estimated | ~13 W cm-1 °C -1 | ||
Thermal expansion, linear |
1.2·10-6 °C -1 |
Remarks | Referens | ||
carrier concentration and mobility: |
|||
n µ |
1015 cm-3 0.2 cm2/Vs |
500 K, polycrystalline material, type of carrier not determined | Bam et al.(1976) |
n µ |
1014 cm-3 4 cm2/Vs |
900 K, mobility increases exponentially with rising temperature between 500 K and | Bam et al.(1976) |
Remarks | Referens | ||
Crystal structure | Hexagonal | ||
Group of symmetry | D6c-P63mmc | ||
Number of atoms in 1 cm3 | |||
Debye temperature | 400 K | ||
Density | 2.18 g cm-3 2.0-2.28 g cm-3 |
Madelung (1991) Rumyantsev et al. (2001) |
|
Lattice constant, a | 2.5040 A 2.5-2.9 A |
297 K 300 K |
Lynch et al. (1966) Rumyantsev et al. (2001) |
Lattice constant, c | 6.6612 A 6.66 A |
297 K 300 K |
Lynch et al. (1966) Rumyantsev et al. (2001) |
Decomposition temperature, Tdec | 2600(100) K | Janaf Thermochemical Tables (1965) |
|
Bulk modulus | 36.5 GPa | 300 K | |
Hardness | 1.5 | on the Mohs scale | |
Phonon wevenumber, v | 49 cm-1 |
E2g, zone center Raman mode | Hoffman et al. (1966) |
770 cm-1 |
A2u, infrared active mode | ||
1367 cm-1 |
E2g, zone center Raman mode | ||
1383 cm-1 |
E1u, infrared active mode |
![]() |
Brillouin zone of the hexagonal lattice. |
Remarks | Referens | ||
Energy gaps, Eg | 5.2(2) eV 3.2...5.8 eV |
300 K, reflectance range of experimental data temperature dependence of resistivity |
Hoffmann et al. (1984) |
4.0...5.8 eV | 300 K | Rumyantsev et al. (2001) | |
Energy gaps, Eg dir | 7.1 eV |
Carpenter & Kirby (1982) | |
Effective electron mass ml in the direction M ![]() in the direction M ![]() |
0.26mo 2.21mo |
300 K | Xu & Ching et al. (1991) |
Effective hole masses mh in the direction K ![]() in the direction M ![]() in the direction M ![]() |
0.47mo 0.50mo 1.33mo |
300 K | Xu & Ching et al. (1991) |
Electron affinity | 4.5 eV | 300 K | Rumyantsev et al. (2001) |
Remarks | Referens | ||
Dielectric constant (static) | ![]() ![]() |
|| to c axis![]() |
Geick et al.(1966) |
Dielectric constant (high frequency) | 4.10 4.95 |
parallel to c axis perpendicular to c axis for 300 K; see also Optical properties. Dielectric functions |
Geick et al.(1966) |
![]() ![]() |
300 K | Rumyantsev et al. (2001) | |
Dielectric constant (static) | 7.1 | 300 K, infrared reflectivity | Gielisse et al.(1967) |
Dielectric constant (high frequency) | 4.5 4.46 |
300 K, infrared reflectivity | Gielisse et al.(1967) Rumyantsev et al. (2001) |
Refractive index, n | 1.65 1.65 2.13 |
BN- film perpendicular to c axis parallel to c axis |
Takahashi et al.(1981) Ishii et al. (1983) Ishii et al. (1983) |
Debye temperature | 400 K | ||
Bulk modulus | 36.5 GPa | ||
Melting point | see Termal properties. Phase diagrams. |
||
Decomposition temperature, Tdec | 2600(100) K | Janaf Thermochemical Tables (1965) | |
Specific heat | ~0.8 J g-1°C -1 | ||
Thermal conductivity parallel to the c axis perpendicular to the c axis |
=<0.3 W cm-1 °C -1 =<6 W cm-1 °C -1 |
Rumyantsev et al. (2001) | |
Thermal expansion, linear parallel to the c axis perpendicular to the c axis |
38·10-6 °C -1 -2.7·10-6 °C -1 |
Crystal structure | Wurtzite | Zinc Blende | Hexagonal |
Group of symmetry | C46v-P63mc | T2d-F43m | D6c-P63mmc |
Density | 3.4870 g cm-3 | 3.450 g cm-3 | 2.0-2.28 g cm-3 |
Bulk modulus | 400 GPa | 400 GPa | 36.5 GPa |
Debye temperature | 1400 K | 1700 K | 400 K |
Melting point | |||
Specific heat | ~0.75 J g-1°C -1 | ~0.6 J g-1°C -1 | ~0.8 J g-1°C -1 |
Density | 3.4870 g cm-3 | 3.450 g cm-3 | 2.0-2.28 g cm-3 |
Hardness on the Mohs scale | 9.5 | 1.5 | |
Surface hardness | 3400 kg mm-2 | 4500 kg mm-2 | |
Dielectric constant (static) | ![]() ![]() |
7.1 | ![]() ![]() |
Dielectric constant (high frequency) | ![]() ![]() |
4.46 | ![]() ![]() |
Infrared refractive index | 2.05 | 2.1 | 1.8 |
Lattice constant, a | 2.55 A | 3.615 A | 2.5-2.9 A |
Lattice constant, c | 4.17 A | 6.66 | |
Effective electron mass (longitudinal) ml (transversal) mt |
0.35mo 0.24mo |
1.2mo 0.26mo |
|
(in the direction M ![]() (in the direction M ![]() |
0.26mo 2.21mo |
||
Effective hole masses mh in the direction G ![]() |
0.88mo | m1 ~=3.16 m2 ~=0.64 m3 ~=0.44 |
|
in the direction G
![]() in the direction G ![]() |
1.08mo 1.02mo |
||
in the direction G
![]() |
0.55mo | ||
in the direction G
![]() |
m1 ~=0.36 m2 ~=1.20 |
||
in the direction K ![]() in the direction M ![]() in the direction M ![]() |
0.47mo 0.50mo 1.33mo |
||
Effective hole massesof dencity of states mv | ~=1.0mo | ||
Electron affinity | 4.5 eV | 4.5 eV | 4.5 eV |
Thermal conductivity experimentally achieved theoretically estimated |
7.4 W cm-1 °C -1 ~13 W cm-1 °C -1 |
||
parallel to the c axis perpendicular to the c axis |
=<0.3 W cm-1 °C -1 =<6 W cm-1 °C -1 |
||
Thermal expansion, linear |
1.2·10-6 °C -1 | ||
Thermal expansion, linear parallel to the c axis perpendicular to the c axis |
2.7·10-6 °C -1 2.3·10-6 °C -1 |
38·10-6 °C -1 -2.7·10-6 °C -1 |
|
Optical phonon energy | ~130 meV | ~130 meV |
Crystal structure | Wurtzite | Zinc Blende | Hexagonal |
Energy gaps, Eg | 4.5-5.5 eV | 6.1...6.4 eV | 4.0...5.8 eV |
Conduction band | |||
Energy separation EG | 8.5 eV | 8.5-10 eV | 9 eV |
Energy separation EM | 6.6 eV | ||
Energy separation EL | >12 eV | ||
Energy separation EA | 10 eV | ||
Effective conduction banddensity of states | 1.5x1019 cm-3 | 2.1x1019 cm-3 | |
Effective valence banddensity of states | 2.6x1019 cm-3 | 2.6x1019 cm-3 | |
Breakdown field | (2...6)x 106 V cm-1 | (1...3)x 106 V cm-1 | |
Mobility electrons | =<200 cm2 V-1 s-1 | ||
Mobility holes | =<500 cm2 V-1 s-1 | ||
Diffusion coefficient electrons | =<5 cm2 s-1 | ||
Diffusion coefficient holes | =<12 cm2 s-1 | ||
Effective valence banddensity of states | 2.6x1019 cm-3 | 2.6x1019 cm-3 |