Breakdown field | ≈(0.5÷40)·103 V/cm |
Mobility holes | ≤5·102 cm2 V-1s-1 |
Diffusion coefficient electrons | ≤103 cm2/s |
Diffusion coefficient holes | ≤10 cm2/s |
Electron thermal velocity | 7.7·105(1+1.18x-0.91x2) m/s |
Hole thermal velocity | 1.8·105m/s |
![]() |
Electron drift mobility (dashed curves) and Hall mobility (solid curves) versus x for InAs1-xSbx. T=300 K. Electron concentration n=5·1016 cm-3 for all curves. Ionized impurity concentration Ni (cm-3): 1. 5·1016; 2. 1.25·1017; 3. 2.5·1017. Experimental points (triangles full circles, and crosses) are taken from three different papers for n=5·1016 cm-3. (Chattopadhyay et al. (1981)) Squares are experimental results for n=5·1015 cm-3 (Tsukamoto et al. (1990)). |
![]() |
Electron drift mobility of InAs1-xSbx versus x at 77K. Ionized impurity concentration (cm-3): 1. 5·1014; 2. 1015; 3. 5·1015; 4. 1016; 5. 5·1016; (Chin et al. (1992)). |
![]() |
Temperature dependence of electron mobility for InAs1-xSbx. Solid line represents theoretical calculation. A dislocation density of 1.5·108 cm-2 and a compensation ratio 0.5 are included. Open triangles: x=0.78 Full circles: x=0.76 n=1017 cm-3 (Egan et al. (1994)). |
![]() |
Electron mobility versus electron concentration n=Nd - Na with series of compensation ratios θ=Na/Nd for x=0.6. T=77 K. (Chin et al. (1992)). |
![]() |
Electron mobility versus electron concentration n=Nd - Na with series of compensation ratios θ=Na/Nd for x=0.9. T=77 K. (Chin et al. (1992)). |
![]() |
Hole Hall mobility versus temperature for different acceptor densities. x=0 (InAs). Hole concentration at 300K po (cm-3): 1. 5.7·1016; 2. 2.6·1017; 3. 4.2·1017; 4. 1.3·1018. (Kesamanly et al. (1968)). |
![]() |
Hole Hall mobility versus temperature for different hole concentration. x=1 (InSb). po (cm-3): 1. 8·1014; 2. 3.15·1018; 3. 2.5·1019. (Zimpel et al. (1989) and Filipchenko and Bolshakov (1976)). |
![]() |
Hole mobility versus hole concentration. x=1 (InSb) 1. - 77 K (Filipchenko and Bolshakov (1976)), 2. - 290 K (Willey (1975)). |
![]() |
The dependences of ionization rates for electrons (α)and holes (β) versus 1/F. T=77 K. α1, β1 - for x=0 (InAs). (Mikhailova et al. (1976)). α2, β2 - for x=0.12. (Matveev et al. (1979)). |
x | αo (cm-1) | Fno (V cm-1) |
0 | 1.8·105 | 1.6·105 |
0.12 | 0.7·106 | 1.5·106 |
x | βo (cm-1) | Fpo (V cm-1) | |
0 | 1.5·105<F<3·104 | 4.7·105 | 0.85·105 |
3·105<F<6·104 | 4.5·105 | 1.54·105 | |
0.12 | F<4.5·104 | 1.1·105 | 1.0·105 |
F>4.5·104 | 6·105 | 1.75·105 |
![]() |
Carrier lifetime in intrinsic InAs1-xSbx versus x (for Auger recombination). T=300 K. (Rogalski and Orman(1985)). |
![]() |
Dependence of carrier lifetime on normalized doping concentration for x=0 (InAs). T=300 K ni is the intrinsic concentration. Dashed lines represent radiative lifetimes. Solid lines represent Auger recombination lifetimes for different components of Auger processes. Symbols represent the experimental data. (Rogalski and Orman (1985)). |
![]() |
Dependence of carrier lifetime on normalized doping concentration for x=0.65. T=300 K ni is the intrinsic concentration. Dashed lines represent radiative lifetimes. Solid lines represent Auger recombination lifetimes for different components of Auger processes. Symbols represent the experimental data. (Rogalski and Orman (1985)). |
![]() |
Dependence of carrier lifetime on normalized doping concentration for x=1 (InSb). T=300 K ni is the intrinsic concentration. Dashed lines represent radiative lifetimes. Solid lines represent Auger recombination lifetimes for different components of Auger processes. Symbols represent the experimental data. (Rogalski and Orman (1985)). |