Remarks | Referens | |||
Dielectric constant (static) | 3C-SiC | ε0 ~= 9.72 | 300 K | Patric & Choyke (1970) |
4H-SiC | The value of 6H-SiC dielectric constant is usually used |
300 K | ||
Dielectric constant (static, ordinary direction) | 6H-SiC | ε0,ort ~= 9.66 | 300 K | Patric & Choyke (1970) |
Dielectric constant (static, extraordinary direction) | 6H-SiC | ε0, || ~= 10.03 | 300 K | Patric & Choyke (1970) |
Ratio between the static dielectric constant (ordinary and extraordinary direction) |
6H-SiC | ε0,ort / ε0, || ~= 0.9631 | 300 K | |
Dielectric constant (high frequency) | 3C-SiC | 6.52 | 300 K | Patric & Choyke (1970) |
4H-SiC | The value of 6H-SiC dielectric constant is usually used |
300 K | ||
Dielectric constant (high frequency, ordinary direction) |
6H-SiC | εort ~= 6.52 | 300 K | Patric & Choyke (1970) |
Dielectric constant (high frequency, extraordinary direction) |
6H-SiC | ε || ~= 6.70 | 300 K | Patric & Choyke (1970) |
Infrared refractive index | 3C-SiC | ~=2.55 | 300 K | Goldberg et al.(2001) |
4H-SiC | ~=2.55 (![]() ~=2.59 ( ||c axis) |
300 K | Goldberg et al.(2001) | |
6H-SiC | ~=2.55 (![]() ~=2.59 ( ||c axis) |
300 K | Goldberg et al.(2001) | |
Refractive index n(λ) | 3C-SiC | n(λ)~= 2.55378 + 3.417 x 104·λ-2 | 300K, 467nm < λ< 691nm | Shaffer & Naum (1969) |
4H-SiC | n0(λ)~= 2.5610 + 3.4 x 104·λ-2
ne(λ)~= 2.6041 + 3.75 x 104·λ-2 |
300K, 467nm < λ< 691nm | Shaffer & Naum (1971) | |
6H-SiC | n0(λ)~= 2.55531 + 3.34 x 104·λ-2
ne(λ)~= 2.5852 + 3.68 x 104·λ-2 |
300K, 467nm < λ< 691nm | Shaffer & Naum (1971) | |
also see Refractive index n vs. wavelength and photon energy | Shaffer & Naum (1971) | |||
Radiative recombination coefficient | 4H-SiC | 1.5 x 10-12 cm3 s-1 | 300 K, estimate | Goldberg et al.(2001) |
Optical photon energy | 3C-SiC | 102.8 meV | 300 K | Goldberg et al.(2001) |
4H-SiC | 104.2 meV | |||
6H-SiC | 104.2 meV |
![]() |
3C-SiC. Phonon dispersion relations Derived from an eight-parameter bond-bending force model [Kushawa (1982)]. Circles experimental. [Kushawa (1982)]. |
![]() |
3C-SiC. Phonon dispersion relations Derived from a real-space formalism based on scattering theory. Circles experimental. Lee & Joannopoulos (1982) |
![]() |
4H-SiC, 6H-SiC, 15R-SiC, 21R-SiC. Phonon dispersion relationsvs. reduced
wavevector. Along the axial direction Feldman et al. (1982) |
phonon wavenumbers: | Remarks | Referens | |||
3C-SiC | νTO(Γ) | 796.2(3) cm-1 | T=300K, Raman spectroscopy |
Olego et al. (1982a) | |
783-796 cm-1 | T=300K | Karch et al. (1994), Nakashima
& Tahara (1989), Feidman et al. (1968), Olego & Cardona (1982) |
|||
νLO(Γ) | 972.2(3) cm-1 | T=300K, Raman spectroscopy |
Olego et al. (1982a) | ||
829 cm-1 | T=300K | Karch et al. (1994), Nakashima
& Tahara (1989), Feidman et al. (1968), Olego & Cardona (1982) |
|||
νTA(L) | 266 cm-1 | T=300K | Olego et al. (1982b), Karch et al. (1994), Nakashima & Tahara (1989), Feidman et al. (1968), Olego & Cardona (1982) |
||
261-266 cm-1 | |||||
νLA(L) | 610 cm-1 | ||||
νTO(L) | 765-766 cm-1 | ||||
νLO(L) | 837-838 cm-1 | ||||
νTA(X) | 366-373 cm-1 | ||||
νLA(X) | 629-640 cm-1 | ||||
νTO(X) | 755-761 cm-1 | ||||
νLO(X) | 829 cm-1 |
main phonon energies: | Remarks | Referens | |||
4H-SiC | TA1 | 46.7 meV | Freitas (1995) | ||
TA2 | 51.4 meV 53.4 meV |
||||
LA | 76.9 meV 78.8 meV |
||||
TO1 | 95.0 meV | ||||
LO | 104.0 meV 104.3 meV |
||||
6H-SiC | TA | 36.3 meV | discussion of free exciton replica in wavelength modulated absorption |
Humphreys (1981) | |
TA1 | 46.3 meV | Humphreys (1981) , Freitas (1995) | |||
TA2 | 53.5 meV | ||||
LA | 53.3 meV | Humphreys et al. (1981) | |||
77.0 meV |
Humphreys et al. (1981), Freitas (1995) | ||||
TO1 | 94.7 meV | Freitas (1995) | |||
TO2 | 95.6 meV | Humphreys et al. (1981), Freitas (1995) | |||
LO | 104.2 meV |
Humphreys et al. (1981), Freitas (1995) | |||
104.7 meV |
Humphreys et al. (1981) |
![]() |
3C-SiC. Refractive index n vs. wavelength. 300 K n(λ)~= 2.55378 + 3.417 x 104·λ-2 Shaffer et al. (1971) |
![]() |
2H-SiC, 4H-SiC, 6H-SiC, 15R-SiC. Refractive index vs. wavelength. Powell (1972) |
![]() |
4H-SiC. Refractive index n vs. wavelength. 300 K 1 - directions ![]() 2 - directions ||c axis (ne(λ)). n0(λ)~= 2.5610 + 3.4 x 104·λ-2 ne(λ)~= 2.6041 + 3.75 x 104·λ-2 Shaffer et al. (1971) |
![]() |
6H-SiC. Refractive index n vs. wavelength. 300 K 1 - directions ![]() 2 - directions ||c axis (ne(λ)). n0(λ)~= 2.55531 + 3.34 x 104·λ-2 ne(λ)~= 2.5852 + 3.68 x 104·λ-2 Shaffer et al. (1971) |
![]() |
4H-SiC, 6H-SiC. Birefringence (ne - n0)
vs. wavelength. 300 K Shaffer et al. (1971) |
![]() |
3C-SiC. Reflectance R vs. photon energy. 300 K 1 - Logothetidis and Petalas (1996); 2 - Lambrecht et al. (1994) |
![]() |
4H-SiC. Reflectance R vs. photon energy. 300 K Lambrecht et al. (1993) |
![]() |
6H-SiC. Reflectance R vs. photon energy. 300 K 1 - Logothetidis and Petalas (1996); 2 - Lambrecht et al. (1994) |
![]() |
6H-SiC. Reflectance R vs. wavelength. 300 K![]() Spitzer et al. (1959) |
![]() |
6H-SiC. Reflectance R vs. wavelength. 300 K || c axis Spitzer et al. (1959) |
![]() |
3C-SiC, 4H-SiC, 6H-SiC. The absorption coefficient α1/2
vs. photon energy. T=4.2 K T=4.2 K Light-polarized E ![]() Choyke (1969) |
![]() |
3C-SiC. The absorption coefficient vs. photon energy for
different electron concentrations T=300 K 1 - Nd = 5 x 1016 cm-3 ; 2 - Nd = 7 x 1016 cm-3 . Solid lines: α = (hν)2 ; Experimental points - Solangi & Chaudhry (1992) |
![]() |
3C-SiC. The absorption coefficient vs. photon energy for
different electron concentrations T=300 K 1 - relatively pure crystal; 2 - Nd = 1019 cm-3 Patrick & Choyke (1969) |
![]() |
4H-SiC. The absorption coefficient vs. photon energy for
different electron concentrations T=300 K Low-doped samples. E ![]() Sridhara et al. (1998) |
![]() |
6H-SiC. The absorption coefficient vs. photon energy at
different temperatures. 1 - T = 293 K (20°C); 2 - T = 573 K (300°C); 3 - T = 873 K (600°C); 4 - T = 1173 K (900°C); 5 - T = 1473 K (1200°C); 6 - T = 1773 K (1500°C). Groth & Kauer (1961) |
![]() |
6H-SiC. The absorption coefficient vs. photon energy. T = 300 K Philipp & Taft (1960) |
![]() |
6H-SiC. The absorption coefficient vs. photon energy. T = 300 K Philipp & Taft (1960) |
![]() |
6H-SiC. The absorption coefficient vs. photon energy. T = 300 K ![]() Nd - Na ~= 3.4 x 1018 cm-3 Radovanova (1973) |
![]() |
6H-SiC. The absorption coefficient vs. photon energy at
different temperatures || c axis, Nd - Na ~= 2.0 x 1018 cm-3. 1 - T = 78 K; 2 - T = 300 K; 3 - T = 390 K; 4 - T = 550 K; 5 - T = 810 K (1200°C); Dubrovskii et al. (1973) |
![]() |
6H-SiC. The absorption coefficient vs. photon energy at
different temperatures![]() 1 - T = 80 K; 2 - T = 300 K; 3 - T = 450 K; 4 - T = 640 K; 5 - T = 930 K; 6 - T = 1100 K; Dubrovskii & Radovanova (1973) |
![]() |
6H-SiC doped with B. The absorption coefficient vs. photon
energy at different temperatures. 1 - T = 300 K; 2 - T = 400 K; 3 - T = 500 K; 4 - T = 600 K; 5 - T = 700 K; 6 - T = 800 K. Tairov & Tsvetkov (1988) |
![]() |
6H-SiC. The absorption coefficient vs. wavelength at different
Nd - Na values. T = 300 K. ![]() 1 - Nd - Na = 1.6 x 1018 cm-3; 2 - Nd - Na = 2.7 x 1018 cm-3; 3 - Nd - Na = 4.0 x 1018 cm-3; 4 - Nd - Na = 4.8 x 1018 cm-3; 5 - Nd - Na = 5.8 x 1018 cm-3; 6 - Nd - Na = 6.3 x 1018 cm-3; 7 - Nd - Na = 1.3 x 1019 cm-3; 8 - Nd - Na = 1.6 x 1019 cm-3; 9 - Nd - Na = 2.6 x 1019 cm-3; 10- Nd - Na = 3.3 x 1019 cm-3; 11- Nd - Na = 4.0 x 1019 cm-3; Radovanova (1973) |
![]() |
4H-SiC. The infrared absorption coefficient vs. wavelength. 1 - T = 80 K; 2 - T = 300 K. E ![]() Radovanova (1973) |
![]() |
4H-SiC. The infrared absorption coefficient vs. wavelength. 1 - T = 80 K; 2 - T = 300 K. E ![]() Dubrovskii & Radovanova (1971) |
![]() |
4H-SiC. Free carrier absorption coefficient vs. wavelength
![]() T = 300 K. Nd - Na = 3 x 1017 cm-3 Radovanova (1973) |
![]() |
6H-SiC. The absorption coefficient vs. temperature at different
wavelength λ. 1 - λ = 1.49 µm; 2 - λ = 2.0 µm; 3 - λ = 2.25 µm; 4 - λ = 3.03 µm; 5 - λ = 3.52 µm; Groth & Kauer (1961) |
![]() |
6H-SiC. The absorption coefficient α vs. wavelength
at different temperature. 1 - α~λ2.6; - T = 293 K (20°C); 2 - α~λ2.2 - T = 673 K (400°C); 3 - α~λ1.95 - T = 1273 K (1000°C) . Groth & Kauer (1961) |