10

ТЕМПЕРАТУРНОЕ ВОЗДЕЙСТВИЕ ИСКРОВОГО ПЛАЗМЕННОГО СПЕКАНИЯ НА СПИННИНГОВАННЫЙ p-Bi_{0.5}Sb_{1.5}Te₃

Мельников А.А.^{1,2}, Табачкова Н.Ю.¹, Кичик С.А.², Маракушев И.С.², Корякин А.Н.², Пономарев В.Ф.², Аленков В.В.²

¹Национальный Исследовательский Технологический Университет «МИСиС», Москва, Россия ²ООО НПО «Кристалл», Королев, Россия E-mail: melnikov@crystalltherm.com

Процесс спиннингования используется в термоэлектричестве с 1980-х годов [1,2]. Интерес к этому технологическому процессу возобновился с появлением новых методов обработки и компактирования материалов, таких как искровое плазменное спекание (ИПС). В литературе представлены работы по приготовлению этим методом как традиционных материалов [3-6], так и спиннингованных материалов р- [7-10] и п-типа [10]. Предполагается, что совмещение методов спиннингования и ИПС позволяет получить наноструктурированный материал со свойствами, превышающими свойства кристаллизованного материала. Авторы указывают существенное увеличение ZT в таких материалах до 1,2 – 1,5 за счет снижения теплопроводности.

Известно, что в процессе компактирования (в т.ч. ИПС) порошковых материалов возникает преимущественная ориентация плоскостей (0 0 1) перпендикулярно направлению приложения давления [3-5]. Вследствие анизотропии термоэлектрических свойств в халькогенидах висмута и сурьмы, в спеченных образцах они максимальны в направлении, перпендикулярном направлению приложения давления. Однако, ориентация кристаллографических плоскостей в спеченных спиннигованных материалах может отличаться от ориентаций в спеченных механоактивированных или измельченных синтезированных материалах. В данной работе было изучено влияние времени (t = 1 – 5 мин) и температуры спекания (T = 410 – 490 °C) на структуру спиннигованного материала. Также были измерены коэффициенты Зеебека и электропроводности в направлениях, перпендикулярном и параллельном направлению приложения давления.

Изображения спиннингованных частиц $Bi_{0,5}Sb_{1,5}Te_3$ представлены на рис.1. Толщина пластин составляет около 30 микрон. Частицы имеют столбчатую структуру с направлением роста, перпендикулярным плоской стороне частиц.

Рис.1. СЭМ-изображения спиннингованных частиц p-Bi_{0.5}Sb_{1.5}Te₃

Фракции порошка с размерами 40-94 мкм спекались в образцы с диаметром 15 мм и высотой 7-8 мм. Интенсивность нагрева для всех образцов составляла 100 К/мин при значениях тока 600 – 1000 А. Дифрактограммы образцов (Си_{Ка1}-излучение), представленные на рис. 2, свидетельствуют об отсутствии четкого текстурирования, однако, на дифрактограммах, снятых с перпендикулярных направлению давления поверхностей (торцов образцов), интенсивности отражений (0 0 6), (0 0 15) заметно выше. Для оценки ориентации плоскостей рассчитывался коэффициент К_{hkl} по формуле:

$$\mathbf{K}_{\mathrm{hkl}} = \frac{\Phi_{\mathrm{hkl}}^{\perp}}{\Phi_{\mathrm{hkl}}^{\parallel}},$$
где

 $\Phi_{hkl}^{\perp,\parallel}$ – относительные полюсные плотности плоскостей (h k l), ориентированных перпендикулярно и параллельно направлению приложения давления (P), соответственно. Коэффициент K_{hkl} отражает объемную долю зерен с плоскостями (h k l), ориентированными перпендикулярно P относительно зерен с плоскостями (h k l), ориентированными параллельно P.

На рис.3 показано изменение коэффициента ориентации K_{hkl} для плоскостей (1 1 0) и (0 0 15) от времени спекания. Было обнаружено, что в образце, спеченном в течение 1 мин, зерен с плоскостями (0 0 1), ориентированными перпендикулярно Р, в три раза больше, чем с плоскостями (0 0 1), ориентированными параллельно Р. С увеличением времени спекания K_{0015} приближается к единице, что свидетельствует о равной объемной доле зерен. K_{110} изменяется несущественно, так же приближаясь к единице. Таким образом, в спиннингованных материалах, спеченных при T = 450 °C, наблюдается частичное осевое (0 0 1) текстурирование, ослабевающее с увеличением времени спекания.

Рис.2 Дифрактограммы p-Bi $_{0.5}$ Sb $_{1.5}$ Te $_3$, скомпактированного ИПС при T = 450 °C и различном времени спекания

Изображения плоскостей скола образцов, полученные сканирующим электронным микроскопом (СЭМ), представлены на рис. 4.

Структура спиннингованных частиц подвергается существенным изменениям в процессе ИПС. Температура процесса оказывает влияние на размер зерна, время выдержки влияет на него в меньшей степени (таблица 1). При спекании при 410 °C в материале сохраняются мелкие частицы (~3-5 мкм), которые, по всей видимости, поглощаются более крупными (~10-20 мкм) при увеличении температуры спекания. При T \geq 450 °C и t \geq 5 мин наблюдается появление и увеличение концентрации пор с диаметром ~1 мкм, что связано с активным ростом зерен в процессе интенсивного нагрева материала.

Рис.4. СЭМ-изображения поверхностей сколов p-Bi_{0,5}Sb_{1,5}Te₃, скомпактированного ИПС при различных температурных условиях

ruomigu i. opedinii pusmep sepen (maii) p Bijjsoj jiej noene inie	Таблица 1.	Средний	размер зерен	(мкм)	$p-Bi_{0.5}Sb_1$	5Тез после	ИПС
---	------------	---------	--------------	-------	------------------	------------	-----

	t = 1 мин	t = 5 мин	t = 10 мин
T = 490 °C	-	29,9	-
T = 450 °C	20,8	17	27,3

Термоэлектрические характеристики полученных образцов до и после отжига представлены в Таблице 2.

Таблица	2	—	Термоэлектрические	характеристики	p-Bi _{0,5} Sb _{1,5} Te ₃ ,		
скомпактированного ИПС при различных температурных условиях							

До отжига									
		T = 450 °C t = 1 мин	T = 450 °C t = 5 мин	T = 450 °C t = 10 мин	T = 410 °C t = 5 мин	T = 490 °C t = 5 мин			
I⊥P	α, мкВ/К	180	184	181	200	176			
	σ , Om ⁻¹ cm ⁻¹	1071	1050	1065	919	1155			
	α ² σ, ×10 ⁻⁴ Вт м ⁻¹ К ⁻²	34,8	35,5	34,7	36,6	35,8			
I∥P	α, мкВ/К	182	185	182	204	181			
	σ , Om ⁻¹ cm ⁻¹	933	927	964	682	888			
	α ² σ, ×10 ⁻⁴ Вт м ⁻¹ К ⁻²	30,7	31,9	32,0	28,3	29,2			
		После отжига							
		T = 450 °C t = 1 мин	T = 450 °C t = 5 мин	T = 450 °C t = 10 мин	T = 410 °C t = 5 мин	T = 490 °C t = 5 мин			
	α , мк B/K	215	210	197	208	210			
I⊥P	<i>σ</i> , Ом ⁻¹ см ⁻¹	677	733	799	755	739			
	α ² σ, ×10 ⁻⁴ Вт м ⁻¹ К ⁻²	31,3	32,4	31,0	32,7	32,6			
I∥P	α, мкВ/К	216	208	203	210	210			
	σ , Om ⁻¹ cm ⁻¹	588	638	665	620	676			
	α ² σ, ×10 ⁻⁴ Вт м ⁻¹ К ⁻²	27,4	27,5	27,5	27,3	29,8			

Все образцы показали б \Box льшие значения электропроводности (σ) в направлении, перпендикулярном направлению приложения давления (I \perp P), при этом коэффициент Зеебека (α) немного выше в параллельном направлении (I \Box P). Анизотропия α не превышает 3%, в то время как анизотропия σ порядка 15%. Анизотропия коэффициента мощности ($\alpha^2 \sigma$)

составляет в среднем 17%. Эти коэффициенты меньше, чем для кристаллизованных материалов, в которых σ в направлении, параллельном росту кристалла, может быть в 2,5-3 раза больше, чем в перпендикулярном направлении [11]. Отжиг в вакууме при T = 320°C в течение 12ч понизил $\alpha^2 \sigma$ в среднем на 9%.

ВЫВОДЫ

Процесс ИПС оказывает существенное влияние на структуру спиннингованных p-Bi_{0,5}Sb_{1,5}Te₃ порошков. При достаточно коротком времени спекания (t = 5, 10 мин) наблюдаются активные процессы рекристаллизации и роста зерен. Преимущественные кристаллографические ориентации соответствуют ориентации обычных прессованных порошковых материалов, но текстура выражена не так явно и ослабевает при увеличении продолжительности спекания. Наилучшие значения коэффициентов мощности во всех образцах наблюдаются в направлении, перпендикулярном оси давления, при этом σ на 15-30% больше, а α на 1-2% меньше. Отжиг в вакууме при T = 320 °C в течение 12 ч снижает коэффициент мощности в среднем на 9%

Доклад подготовлен по результатам работы: <u>DOI:10.1007/s11664-</u> <u>014-3439-0</u>

ЛИТЕРАТУРА

- 1. Глазов В.М., Ятманов Ю.В, Иванова А.Б. Известия АН СССР Неорганические материалы, 22, 596 (1986)
- Гогишвили О.Ш., Лалыкин С.П., Криворучко С.П. и др. // VII Всесоюзная конференция «Химия, физика и техническое применение халькогенидов», 367 (Ужгород: 1988).
- 3. L.D. Zhao, B.P. Zhang, J. F. Lib, H.L. Zhang, W.S. Liu, Solid State Sciences 10 (2008) 651 658
- 4. Jun Jiang, Lidong Chen, Shengqiang Bai, Qin Yao, Qun Wang, Mater. Sci. Eng. B, 117 (2005) 334–338
- 5. J. Jiang et al. / Scripta Materialia 52 (2005) 347–351
- 6. V.B. Osvenskiy et al., /J. Alloys Compd. 586 (2014) S413–S418
- 7. W. Xie et al., Nano Lett. 2010,10, 3283–3289
- 8. W. Xie et al., J. Mater. Res., Vol. 26, No. 15, Aug 14, 2011
- 9. Иванова Л.Д., Петрова Л.И., Гранаткина Ю.В и др. Термоэлектричество 1 (2013) 34-45
- H. Böttner, D.G. Ebling, A. Jacquot, UtaKühn, J. Schmidt, MRS Proceedings, Volume 1044, 2007
- 11. H. Scherrer and S. Scherrer: Bismuth telluride, antimony telluride, and their solid solutions, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press LLC, New York, 1995), p. 229.