ПРАВИЛО ЛЕНЦА ДЛЯ ТЕРМОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ, РАБОТАЮЩИХ В РЕЖИМЕ МАКСИМАЛЬНОЙ МОЩНОСТИ

Коржуев М.А.

Φ ГБУН ИМЕТ им. А.А.Байкова РАН, Москва, E-mail: <u>korzhuev@imet.ac.ru</u>¹

Правило достижения режима максимальной мощности (W_{max}) в электрических цепях, питаемых от источника напряжения U, впервые получил академик СПб АН Э. Х. Ленц (1804-1865)¹

$$M = R/r_{\rm i} = 1,\tag{1}$$

где *R*– электрические сопротивления полезной нагрузки, *r*_i - внутреннее электрическое сопротивление источника тока и арматуры [1, 2].

Формальное подобие процессов переноса электричества и тепла (табл.1) позволяет распространить правило Ленца также на тепловые цепи, где оно имеет тот же вид, что и для электрических цепей

$$\Psi = \zeta / \zeta_{i} = 1, \tag{2}$$

где ζ и ζ_i - тепловые сопротивления полезной нагрузки, а также источника тепла и теплообменников (рис.1) [3-5]. Соотношения (1) и (2) определяют максимальные доли мощности W_{max} , и «теплового напора» ($Q\Delta T$)_{max}, которые источники напряжения U и тепла ΔT могут передать полезной электрической R, либо тепловой нагрузке ζ , при работе в режимах W_{max} , и ($Q\Delta T$)_{max}, соответственно (здесь Q – тепловой поток) (рис.1).² В табл.2 приведены параметры изолированных (не взаимодействующих друг с другом) электрических и тепловых цепей (рис.1), оптимизированных по правилам Ленца (1) и (2) для режимов W_{max} и (Q ΔT)_{max}. Сравнение величин W_{max} и (Q ΔT)_{max} (табл.2) с мощностями $W_{\text{pacn}} = U^2 / r_i$ и (Q ΔT)_{pacn} = $\Delta T^2 / \zeta_i$, выделяющихся в цепях в режимах к.з., показывает, что в режимах W_{max} и (Q ΔT)_{max} электрические и тепловые цепи (рис.1) переносят к полезной нагрузке (R и ζ) только ¹/₄ от располагаемых мощностей.

Таблица 1

Соотношения подобия изолированных электрических (Э) и тепловых (Т) цепей

Цепь	Движущая	Поток	Сопротивление	Закон	Правило
	сила			Ома	Кирхгофа
Э	U	Ι	R	U=IR	$\Sigma I = 0$
Т	ΔT	Q	ζ	$\Delta T = Q \zeta$	$\Sigma Q = 0$

Рис.1. Изолированные электрическая (а) и тепловая (б) цепи (б).

Таблица 2

Оптимальные параметры изолированных электрических (Э) и тепловых (Т) цепей, соответствующие режиму $W_{\rm max}$ *u* ($Q\Delta T$)_{max} [5 - 7]

Цепь	$U_{ m R}$ опт и $\Delta T^{ m 9}_{ m ont}$	$I_{ m ont}$ и $Q_{ m ont}$	Правило Ленца	$W_{\rm max}$ и (Q ΔT) _{max}
Э	U/2	$I_{\rm K.3}/2$	$M=1; R=r_{i}$	$U^2/4r_{\rm i}$
Т	$\Delta T/2$	$Q_{ m K3}$ /2	$\Psi = 1; \zeta = \zeta_i$	$\Delta T^2/4 \zeta_i$

Термоэлектрические генераторы Термоэлектрические генераторы (ТЭГ) являются тепловыми и электрическими машинами одновременно [6, 7]. Поэтому правило Ленца должно применяться к ТЭГ дважды, а именно сначала к тепловым, а затем и к их электрическим цепям [4, 5]. В режиме х.х. (электрический ток I = 0) электрические и тепловые цепи ТЭГ не взаимодействуют друг с другом, поэтому для их расчетов можно использовать правила Ленца для изолированных цепей (1) и (2) (табл.2). Однако при работе в режимах генерации энергии (I > 0) тепловые и электрические цепи ТЭГ начинают взаимодействовать друг с другом, изменяя свои оптимальные тепловые и электрические параметры ($U_R^{\text{опт}}$,

¹ Исследуя нагрев металлических проволок, Ленц установил, что «...при наивыгоднейшем для выделении тепла устройстве цепи сопротивление нагреваемой проволоки должно быть равно сопротивлению гальванической батареи» [1].

² Основные режимы работы цепей (рис.1): 1) «короткого замыкания» (к.з.) (R, $\xi = 0$); 2) «холостого хода» (х.х.) (R, $\xi = \infty$); 3) «максимальной мощности» W_{max} ($R = r_i$) и «максимального теплового напора» (Q ΔT)_{max} ($\zeta = \zeta_i$); 4) максимального КПД $\eta_{\text{max}} = (W/Q_r)_{\text{max}}$ [6, 7].

 $\Delta T^{2}_{\text{опт}}$ и др.) вследствие выделения тепла Пельтье (Q_{Π}) и Джоуля ($Q_{Д_{\#}}$) на стыках термопар [6, 7].

Целью настоящей работы было изучение действия правила Ленца для изолированных тепловых цепей, а также для электрических и тепловых цепей ТЭГ, взаимодействующих друг с другом в режиме W_{max} .

Изолированные тепловые иепи ТЭГ. На рис.2 показаны основные типы тепловых цепей, используемых для питания ТЭГ [6, 7]. В табл. 3 приведены характеристики цепей (рис.2) и указаны граничные условия (ГУ), используемые для их численных расчетов [6, 7]. Для схем (а, в, г, рис.2) приведены также выражения для правил Ленца, учитывающие вклады побочных тепловых сопротивлений цепей (горячего и холодного теплообменников (ζ_{rr} и ζ_{yr}), и внутреннего сопротивления источника тепла (ζ_{rr})). При выполнении правил Ленца имеем $\Delta T' = T_r - T_r = \Delta T/2$ (табл.3), при этом «тепловые напоры» на тепловом сопротивлении нагрузки ζ для цепей (а, в, г, рис.2) достигают своего максимума $(Q\Delta T)_{\text{max}} = (\Delta T)^2 / 4\zeta$ [4, 5]. В то же время, для модели Иоффе ($\zeta_{\rm H}, \zeta_{\rm LT}, \zeta_{\rm XT} = 0$) (б, рис.2) перепад температур на полезной нагрузке ζ определяется не правилом Ленца, а ГУ (табл.3). В результате для модели Иоффе (б, рис.2) имеем $\Delta T' = \Delta T$, при этом «тепловой напор» на полезной нагрузке $\zeta - (Q\Delta T)_{\text{max}} = (\Delta T)^2 / \zeta$, оказывается в 4 раза большим, чем для цепей (а, в, г, рис.2), оптимизированных по правилу Ленца [6, 7].

Рис.2. Модели тепловых цепей ТЭГ: а – общий случай (о.с.); б – модель Иоффе [6]; в – модель Охотина [7]; г - изотопный источник тепла [7].

На рис.3 показаны отношения удельных «тепловых напоров» ($Q\Delta T$)_{max} для моделей с $\zeta_{\rm H}$, $\zeta_{\rm rr}$, $\zeta_{\rm xr} \neq 0$ (а, б, в, рис.2) к максимальному «тепловому

напору» $(Q\Delta T)^0 = \Delta T^2/\zeta$, достигаемому в модели Иоффе $(\zeta_{\rm H}, \zeta_{\rm TT}, \zeta_{\rm XT} = 0)$ [6, 7]. Из рис.3 видно, что при ζ = const для моделей с $\zeta_{\rm H}, \zeta_{\rm TT}, \zeta_{\rm XT} \neq 0$ (рис.2) с ростом суммы побочных тепловых сопротивлений $\Sigma\zeta_i$ (i= H, BT, XT) отношение $(Q\Delta T)_{\rm max} / (Q\Delta T)^0$ резко снижается (1 → 5, рис.3).

Таблица 3

Характеристики изолированных тепловых цепей ТЭГ (рис.2) [5, 7]

Цепь	Характеристики	Правило Ленца	$\Delta T' *)$	ГУ
а	$\zeta_{\text{H}}, \zeta_{\text{ft}}, \zeta_{\text{xt}} \neq 0$	$\zeta = \zeta_{\rm H} + \zeta_{\rm FT} + \zeta_{\rm XT}$	$\Delta T/2$	T_0, T_1 - const
б	$\zeta_{\text{h}}, \zeta_{\text{ft}}, \zeta_{\text{xt}} = 0$	-	ΔT	$T_{\rm r}, T_{\rm x}$ - const
В	$\zeta_{\text{ft}}, \zeta_{\text{xt}} \neq 0, \ \zeta_{\text{h}} = 0$	$\zeta = \zeta_{\rm rt} + \zeta_{\rm xt}$	$\Delta T/2$	T_0, T_1 - const
Г	$\zeta_{ m H} >> \zeta_{ m rt}, \zeta_{ m xt}$	$\zeta = \zeta_{\rm H} * *)$	$\Delta T/2$	$Q, T_0, - \text{const}$

*) - $\Delta T' = T_r - T_x$ – рабочий перепад температур; **) - в реальных ТЭГ условие может не достигаться из-за чрезмерного расхода материала.

Рис.3. Отношение удельных «тепловых напоров» ($Q\Delta T$)_{тах} и ($Q\Delta T$)⁰= ΔT^2 / ζ для различных тепловых цепей ТЭГ (рис.2), оптимизированных по правилу Ленца (2). 1 – 6; 2 – в, при ζ_{xT} = 0; 3 – с; 4 – г; 5 – а ($\zeta_r = \zeta_x = \zeta_H$ /5).

Взаимодействие электрических и тепловых иепей ТЭГ. На рис.4 показано, как происходит взаимодействие электрических и тепловых цепей при работе ТЭГ в режиме генерации энергии (I > 0) [6, 7]. ТЭГ на рис.З представлен в виде четырехполюсника с двумя электрическими и двумя тепловыми входами/выходами. Рассмотрены общая модель тепловой цепи ТЭГ ($\zeta_{\rm H}, \zeta_{\rm TT}, \zeta_{\rm XT} \neq 0$) (рис.4а) и модель Иоффе ($\zeta_{\rm H} = \zeta_{\rm TT} = \zeta_{\rm XT} =$ 0) (рис.4б). Во всех случаях работа электрической цепи (I > 0) меняет режимы работы тепловой цепи ТЭГ (Q_r, Q_x, Q_ζ) (рис.4) за счет выделения теплот Q_{Π} и $Q_{Д_{\#}}$ на стыках термопар [6, 7]. В табл. 4 и 5 приведены параметры моделей (рис.4), соответствующие различным режимах работы ТЭГ. Из табл.4 и 5 видно, что для различных моделей ТЭГ (рис.4) условия оптимизации в режиме W_{max} с помощью правила Ленца существенно различаются. В модели Иоффе (рис.4а) правило Ленца для электрических цепей ТЭГ в режиме W_{max} сохраняется и имеет вид, соответствующий электрическим изолированным цепям (M= 1, V_R= U /2) (табл.4, ячейки затемнены). Это связано с тем, что выделение Q_{Π} и $Q_{Д*}$ при I > 0 не

меняет $\Delta T'= \Delta T$ на стыках термопар, а, следовательно, не меняется и термоэлектрическое напряжение $U=\alpha\Delta T$ ТЭГ (табл.4) [6, 7]. В то же время, в случае (рис.4а) правила Ленца (1) и (2) для изолированных электрических и тепловых цепей ТЭГ сохраняются только в режиме х.х. При I > 0 для модели ТЭГ (рис.4а) правила Ленца (1) и (2) существенно нарушаются ($M, \xi \neq 1$) из-за изменения $\Delta T'$ на стыках термопар (табл.5). Таким образом, достижение режима W_{max} ТЭГ требует дополнительной оптимизации тепловой цепи по длине ветвей $\Psi = 1 \rightarrow M_0$, а электрической цепи - по сопротивлению нагрузки $M=1 \rightarrow A \rightarrow M_0$ (табл.5) [7]. Результаты оптимизации (табл.5, ячейки затемнены) показывают, что в режиме W_{max} ТЭГ в качестве инвариантов правила Ленца сохраняются параметры изолированных тепловых и электрических цепей $\Delta T'= \frac{1}{2}\Delta T$ и $V_{\text{R}} = U '/2$, ответственные за потоки энергии на входе/ выходе ТЭГ [6, 7].

Рис.4. Схемы совместного включения электрических и тепловых цепей ТЭГ. а – модель Охотина (о.с.) [7]; б - модель Иоффе [6].

Выводы

1. Показано, что правило Ленца применимо к изолированным (невзаимодействующим) электрическим ($M = R/r_i = 1$) и тепловым ($X = \zeta/\zeta_i = 1$) цепям ТЭГ, работающим в режиме максимальной мощности W_{max} и максимального теплового напора ($Q\Delta T$)_{тах}, соответственно.

2. Обнаружено, что взаимодействие электрических и тепловых цепей ТЭГ в режиме генерации энергии (I > 0), приводит к нарушению правил Ленца, соответствующим изолированным электрическим $(M \neq 1)$ и тепловым цепям ($\Psi \neq 1$), в результате режим W_{max} ТЭГ при $M = \Psi = 1$ не достигается (исключение составляет модель Иоффе).

3. Для достижения режима W_{max} необходима дополнительная оптимизации тепловой цепи ТЭГ по длине ветвей $\Psi = 1 \rightarrow M_0$ и электрической цепи по сопротивлению нагрузки $M = 1 \rightarrow A \rightarrow M_0$.

Оптимизация восстанавливает значения перепада температур $\Delta T = T_r - T_x = \frac{1}{2}\Delta T$ и выходного напряжения $V_R = U^{\epsilon}/2$, отвечающие правилу Ленца для изолированных цепей ТЭГ($M = \Psi = 1$).

Таблица 4

Параметры модели Иоффе (рис.4, б) в различных режимах работы ТЭГ [7]*)

Режим	ΔT '	M = R/r	$V_{ m R}$	Ι	W
O. c.	ΔT	[0, ∞]	U M D	UD/r	$(U^2/r) M D^2$
X. x.	ΔT	8	U	0	0
К. з.	ΔT	0	0	U/r	0
W _{max}	ΔT	1	U/2	U / (2r)	$U^2/(4r)$

*) - расчет выполнен для $(Z \ \overline{T}) = 1$, где $M_0 = (1+Z \ \overline{T})^{1/2}$; $\overline{T} = (T_r - T_x)/2$,

 $r = \Sigma r_k$ -сопротивление ветвей, контактов и арматуры; $D = (M+1)^{-1}$; $B = (M+A)^{-1}$; $A = 1 + ZT_r (\zeta_H + \zeta_{\Gamma T}) / \Sigma \zeta_K + ZT_x \zeta_{XT} / \Sigma \zeta_K$; $\Sigma \zeta_K$ – полное тепловое сопротивление ТЭГ.

Таблица 5 Параметры модели о.с. (рис.4, а) в различных режимах работы ТЭГ [7]

Режим	ΔT '	M = R/r	V_{R}	Ι	W
O. c.	$\frac{1}{2}\Delta T B/D$	[0,∞]	$U^{\cdot}M B$	(<i>U</i> [•] /r) <i>B</i>	$(U'^2/r) M B^2$
X. x.	$\Delta T_{\rm xx=} = \frac{1}{2} \Delta T$	∞	U '	0	0
К. з.	$\Delta T_{\rm xx}/A$	0	0	<i>U</i> ' / r	0
W _{max}	$1/2\Delta T$	$A = \Psi = M_0$	U	U '/ (2r M ₀)	$(U')^2/(4r M_0)$

ЛИТЕРАТУРА

- 1. Ленц Э.Х. Избранные труды. М., Изд-во АН СССР, 1950, с.361-449.
- 2. Льоцци М. История физики. М., Мир, 1970, 464 с.
- 3. Кириллин В.А., Сычев В.В., Шейндлин А.В. Техническая термодинамика. М., Энергия, 1974. 448 с.
- Snyder G. J. Thermoelectric Power Generators. Efficiency and Compatibility. Thermoelectric Handbook. Macro to Nano. Ed: D.M.Rowe, CRC Press, Boca Rato, London, N.Y., 2006. p. 9.1 – 9.26.
- 5. Коржуев М.А., Гранаткина Ю.В., СвечниковаТ.Е. Термоэлектричество, 2012. №1. с.81- 94; 2013. №3. с.58- 75.
- Иоффе А.Ф. Полупроводниковые термоэлементы. М.-Л., Изд-во АН СССР. 1956. 104 с.
- 7. Охотин А.С., Ефремов А.А., Охотин В.С., Пушкарский А.С. Термоэлектрические генераторы. М., Атомиздат, 1976. 320 с.