35

ОПТИЧЕСКИЕ СВОЙСТВА И СТРУКТУРА ВАЛЕНТНОЙ ЗОНЫ В СЛОЯХ Ві_{0.5}Sb_{1.5}Te₃

Вейс А.Н.¹, Лукьянова Л.Н.², Кутасов В.А.²

¹Санкт-Петербургский государственный политехнический университет, Санкт-Петербург, Россия, ²ФТИ им. А.Ф. Иоффе, Санкт Петербург, Россия. E-mail: <u>alnveis@mail.ru</u>

Созданный в середине прошлого века Г.И.Шмелевым термоэлектрический материал p-Bi_{0,5}Sb_{1,5}Te₃ и на сегодняшний день является одним из самых лучших. Он до сих пор широко используется для создания рветвей среднетемпературных термоэлектрических устройств. Однако причины, обуславливающие существенное возрастание в нем параметра термоэлектрической эффективности Z, до сих пор не понятны. Их нельзя свести только лишь к одному – уменьшению величины решеточной тепло-

проводности _{χlatt}, поскольку симметричный состав, а именно $p-Bi_{15}Sb_{05}Te_{3}$ столь высоким значением Z не обладает. Отсюда следует, что введение в теллурид висмута значительных количеств теллурида сурьмы сопровождается не только снижением χ_{latt} , но и существенными изменениями в энергетическом спектре Ві2Те3. Для того, чтобы установить характер этих изменений, необходимы деисследования тальные свойств p- Bi_{0.5}Sb_{1.5}Te₃. Однако подобных исследований до сих пор не проводилось. Имеющиеся в литера-

Рис. 1. Спектр $R(\lambda)$ в p-Bi_{0,5}Sb_{1,5}Te₃ (p=5,5 \cdot 10¹⁹ см⁻³). Точки – эксперимент, линия – расчет методом, изложенным в работе [2], при ε_{∞} =62,5.

туре данные отрывочны, плохо согласуются между собой и не могут быть использованы для построения зонной схемы этого твердого раствора. В

настоящей работе предпринята попытка в какой-то мере восполнить этот

пробел. В ней исследованы оптические свойства (коэффициенты отражения R и поглощения α) в р-Bi_{0,5}Sb_{1,5}Te₃ с концентрацией свободных дырок p_H=5,5·10¹⁹ см⁻³. Полученные данные обсуждаются совместно с результатами исследования спектров α (hv) в р-Bi_{0,5}Sb_{1,5}Te₃ с низкими p_H, взятыми из работы [1].

Исследуемый монокристалл был выращен методом направленной кристаллизации. Спектр R(λ) был исследован с использованием поверхности, приготовленной методом скола. Тонкие образцы, необходимые для исследования спектров прозрачности, были выколоты из слитка. Их толщина (1,7; 2,53 и 2,61 мкм) была определена по положению интерференционных полос в спектрах про-Экспериментальные зрачности. данные по поглощению, полученные в различных образцах, были усреднены. Все эксперименты выполнены при комнатной температуре (300 К) в конфигурации, при которой вектор напряженности

Рис. 2. Спектры поглощения α (1), дополнительного поглощения $\alpha_{\Delta E}$ (2), связанного с межподзонными оптическими переходами в валентной зоне в p-Bi_{0.5}Sb_{1.5}Te₃ (p_H=5,5·10¹⁹ см⁻³). Точки- эксперимент, линии (4, 5) –расчет при ΔE_v =0,13 (4) и 0,143 (5) эВ, μ^* =1. 3 – составляющая спектра α (hv), связанная со свободными дырками.

электрического поля Е был перпендикулярен оси с₃ кристалла.

Экспериментальные данные, полученные в настоящей работе, показаны на рис. 1 и 2. Эффективная масса проводимости m_R в $p-Bi_{0,5}Sb_{1,5}Te_3$ ($p_H=5,5\cdot10^{19}\ cm^{-3}$) была определена при помощи расчета спектра $R(\lambda)$ методом, предложенным авторами [2]. Оказалось, что в изученном образце $p-Bi_{0,5}Sb_{1,5}Te_3\ m_R=0,28m_0$ – втрое выше, чем в Bi_2Te_3 со сравнимой концентрацией дырок. При помощи расчета было получено так же, что высокочастотная диэлектрическая проницаемость $Bi_{0,5}Sb_{1,5}Te_3\ \epsilon_{\infty}=62,5\pm5,0.$

Необходимая для построения зонной схемы информация о величинах энергетических зазоров в изучаемом соединении может быть извлечена при помощи детального анализа спектра оптического поглощения p-Bi_{0,5}Sb_{1,5}Te₃ (p=5,5·10¹⁹ cm⁻³). Видно, что спектр α (hv), представленный на рис. 2, содержит дополнительную составляющую $\alpha_{\Delta E}$, расположенную на фоне поглощения свободными дырками. Основываясь на представлениях о существовании подобия в строении зон в пределах всей группы твердых растворов p-Bi_{2-x}Sb_xTe₃, полученных в результате исследования квантовых осцилляций [3, 4] и оптических свойств [1, 5] этих соединений, можно предполагать, что составляющая $\alpha_{\Delta E}$, наблюдаемая в спектре оптического поглощения p-Bi_{0,5}Sb_{1,5}Te₃ (p=5,5·10¹⁹ cm⁻³), связана с межподзонными оптическими переходами электронов в его валентной зоне.

Величина энергетического зазора между подзонами валентной зоны ΔE была найдена при помощи расчета спектра $\alpha_{\Delta E}$ (hv). Для этого составляющая $\alpha_{\Delta E}$ была выделена из спектра оптического поглощения. С этой целью из экспериментальных значений α были последовательно вычтены: поглощение свободными дырками α_{fc} , экстраполированное в коротковолновую область по закону α_{fc} ~(hv)⁻ⁿ (в двойном логарифмическом масштабе – это прямая с наклоном (–n), показанная на рис. 2 линией 3), а также

поглощение, связанное с "хвостами"плотности локализованных состояний в запрещенной зоне [1, 5], экстраполированное в длинноволновую область при помощи эмпирической формулы Урбаха $\alpha = 7500 \cdot \exp[(hv - 0.2)/0.024]$ cm⁻¹. Полученный при этом спектр $\alpha_{AE}(hv)$ представлен на рис. 2 кривой 2. Величина энергетического зазора между подзонами валентной зоны была определена при помощи расчета спектра $\alpha_{AE}(hv)$, выполненного в рамках теории Хаги и Кимуры [6] для переходов І-типа. Результаты расчета спектра $\alpha_{AE}(hv)$ представлены на рис. 2 кривыми 4, 5. Оказалось, что в исследованном образце величина энергетического зазора между валентной подзонами зоны $\Delta E = (0, 13 - 0.143) \Rightarrow B.$

Рис. 3. Спектр межподзонного поглощения в $p-Bi_{0,5}Sb_{1,5}Te_3$ ($p_H=5\cdot10^{18}$ см⁻³), построенный по данным работы [1]. Сплошные линии 1, 2 – экспериментальные данные, полученные при вариации наклона зависимости $\alpha_{fc}(hv)$; пунктир 3, 4 – результаты расчета, выполненного при ΔE , равном 0,08 эВ (3) и 0,105 эВ (4).

Этот результат был сопоставлен с данными, полученными посредством анализа спектров оптического поглощения в p-Bi05Sb15Te3 с низкими концентрациями дырок ($p_{\rm H}=5\cdot10^{18}$ см⁻³), взятыми из работы [1]. Способ выделения составляющей аль был аналогичен описанному выше с той только разницей, что при этом была проварьирована величина наклона -n прямых $\ln \alpha_{fc} \sim [-n \cdot \ln(hv)]$, описывающих поглощение свободными дырками в двойном логарифмическом масштабе. Для того, чтобы уменьшить степень влияния "хвостов" на конечный результат, спектральный интервал, в пределах которого выполнялось выделение зависимостей $\alpha_{AF}(hv)$ в образцах с низкими р_н, был ограничен сверху значением hv=0,13 эВ. Полученные при этом спектры α_{AE} в p-Bi_{0.5}Sb_{1.5}Te₃ с концентрацией дырок $p_{\rm H} \approx 5 \cdot 10^{18}$ см⁻³ наряду с результатами их расчета в рамках теории, развитой в работе [6], показаны на рис. З. Видно, что величина энергетического зазора между двумя подзонами валентной зоны ΔЕ в образце с низкой концентрацией дырок оказываются существенно меньше, чем в p-Bi_{0.5}Sb_{1.5}Te₃ $(p_{\rm H}=5.5 \cdot 10^{19} \text{ см}^{-3})$ и составляют 0.08 – 0.105 эВ. Столь сильное различие в величинах ΔЕ для двух образцов p-Bi_{0.5}Sb_{1.5}Te₃ с низкой и высокой p_H указывает на существенную роль обменного взаимодействия свободных дырок в формировании энергетического спектра изучаемого твердого раствора и обуславливает необходимость выполнения детального анализа края собственного поглощения в образце в p-Bi_{0.5}Sb_{1.5}Te₃ ($p_{\rm H}$ =5,5·10¹⁹ см⁻³).

Для этого спектральная зависимость коэффициента межзоного поглощения в сильно легированном образце α_N была выделена из экспериментальной кривой $\alpha(hv)$ посредством вычитания вкладов, связанных со свободными дырками α_{fc} и межподзоными переходами электронов в валентной зоне $\alpha_{\Delta E}$. Полученная таким образом зависимость $\alpha_N(hv)$ представлена на рис. 4 кривой 1.

Ее анализ был проведен в два этапа. Цель первого этапа состояла в том, чтобы определить величину отношения эффективных масс плотности состояний электронов m_{dn} и дырок m_{dp} . Как известно, коэффициенты поглощения в образцах с высокой α_N и низкой концентрацией дырок α_0 связаны соотношением

$$\alpha_{\rm N} = \alpha_0 [1 + \exp \frac{E_{\rm gN} - h\nu}{(1 + m_{\rm dp}/m_{\rm dn})kT}]^{-1}$$
(1)

в котором оптическая ширина запрещенной зоны образца с высокой концентрацией дырок E_{gN} связана с шириной запрещенной зоны образца с низкой концентрацией дырок E_{g0} соотношением $E_{gN} = E_{g0} + \mu_p (1+m_{dp}/m_{dn})$, а α_0 определяется обычной формулой $\alpha_0 = A \cdot (hv - E_{g0})^{1/2}$. Величины искомого параметра (m_{dp}/m_{dn}), были найдены при помощи подгонки расчетных

спектров $\alpha_N(hv)$ к экспериментальным точкам. При этом, в качестве α₀ были использованы экспериментальные данные, полученные в работе [1], усредненные по всем исследованным в ней образцам (кривая 2 рис. 4). Результаты выполненного расчета показаны на рис. 4 линиями (кривые 3, $Bi_0 _5 Sb_1 _5 Te_3$ $(p_{\rm H}=5,5\cdot10^{19})$ cm^{-3}) отношение m_{dp}/m_{dn} велико и может достигать 2,5.

hv, эВ

Результаты выполненного расчета показаны на рис. 4. Спектральная зависимость коэффициента межзонного поглощения α_N в р-Ві_{0,5}Sb_{1,5}Te₃ (р_H= 5,5·10¹⁹ см⁻³). Точки (1) – эксперимент. Линии: 2– спектр межзонного поглощения в р-Ві_{0,5}Sb_{1,5}Te₃ с низкими концентрациями дырок, построенный по данным работы [1], 3, 4 – результаты расчета зависимостей $\alpha_N(hv)$, выполненного по формуле (1) при: $m_{dp}=m_{dn}$, $E_{gN}=0,265$ эВ (3) и $m_{dp}=2,5m_{dn}$, $E_{gN}=0,225$ эВ (4).

На втором этапе анализа следовало найти величины E_{gN} и E_{g0} в сильно легированном p-Bi_{0,5}Sb_{1,5}Te₃ (p = 5,5·10¹⁹ cm⁻³). Для этого была применена методика, развитая в работе [7]. В соответствии с [7], значение E_{gN} было определено по отсечке прямой α_N^2 (hv) на оси абсцисс, а для отыскания энергии E_{g0} были использованы значения α_{0i} , найденные, исходя из известных величин α_{Ni} , представленных точками на рис. 4, по формуле (1) при $m_{dp}/m_{dn}=2,5$. Полученные таким образом значения E_{g0} были усреднены методами математической статистики с надежностью s=0,95. Оказалось, что в p-Bi_{0,5}Sb_{1,5}Te₃ (p=5,5·10¹⁹ cm⁻³) $E_{gN}=0,2$ эВ, а $E_{g0}=(0,163\pm0,034)$ эВ. Существенное различие в величинах параметра E_{g0} , p-Bi_{0,5}Sb_{1,5}Te₃ с низкой ($E_{g0}=(0,209\pm0,005)$ зВ, [1]) и высокой концентрациями дырок, не противоречит предположению о заметном вкладе обменного взаимодействия дырок в величины его зонных параметров.

В заключение заметим, что установленный в настоящей работе факт заметного превышения эффективной массы плотности состояний дырок в Bi_{0.5}Sb_{1.5}Te₃ над эффективной массой плотности состояний электронов, на-

ряду с выявленным авторами [8] возрастанием приведенных эффективных масс электронов и дырок в нем по сравнению с соответствующими данными для Bi₂Te₃, может способствовать заметному возрастанию параметра термоэлектрической эффективности Z в изучаемом твердом растворе.

Рис. 5. Энергетическая схема $Bi_{0,5}Sb_{1,5}Te_3$. p_H, 10^{18} см⁻³: a) - 5, δ) – 55. Энергетическая схема $Bi_{0,5}Sb_{1,5}Te_3$ при комнатной температуре, соответствующая полученным данным, показана на рис. 5.

ЛИТЕРАТУРА

- 1. Вейс А.Н. Известия вузов. Физика. 2008, N7, с. 50-52.
- 2. Кухарский А.А., Субашиев В.К. ФТТ, 1966, т.8, N 3, с.753-757.
- 3. Kohler H., Freudenberger A. Physica Status Solidi (b), 1977, v. 84, N 1, p. 195-203.
- Кульбачинский В.А., Каминский А.Ю., Кытин В.Г. ЖЭТФ, 2000. Т. 117, N 6, с.1242-1250.
- 5. Вейс А.Н., Житинская М.К., Лукьянова Л.Н., Кутасов В.А. Научнотехнические ведомости СПбГПУ. Физико-математические науки, 2013, N 3(177), с. 29-41.
- 6. Haga E., Kimura H. J. Phys. Soc. Japan, 1964, v. 19, N 9, p. 1596-1606.
- Вейс А.Н., Житинская М.К., Шелимова Л.Е. Оптические свойства PbBi₄Te₇. Доклады XIII Межгосударственного семинара "Термоэлектрики и их применения". С.-Петербург, 2013, с. 144-149.
- 8. Вейс А.Н., Лукьянова Л.Н., Кутасов В.А. ФТТ, 2012, т. 54, N 11, с. 2051-2057.