ОПТИМИЗАЦИЯ ПОЛОЖЕНИЯ МАКСИМУМА ТЕРМОЭЛЕКТРИЧЕСКОЙ ДОБРОТНОСТИ Z_{max} НА ШКАЛЕ ТЕМПЕРАТУР ПУТЕМ ИЗМЕНЕНИЯ ЩИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ *E*g ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ

Коржуев М.А., Нихезина И.Ю.

ФГБУН ИМЕТ им. А.А.Байкова РАН, Москва, E-mail: <u>korzhuev@imet.ac.ru;</u>

Ширина запрещенной зоны $E_{\rm g}$ конденсированных фаз является их фундаментальным параметром. По величине $E_{\rm g}$ можно судить о типе химической связи, доминирующей в соединении, об устойчивости материалов в определенном интервале изменений состава и внешних параметров, о соотношении электронной и ионной проводимости в образцах, а также об основных термодинамических характеристиках соединений [1-2]. Добротность термоэлектрических материалов (ТЭМ)

$$Z = \alpha^2 \, \sigma / \kappa \tag{1}$$

(здесь α - коэффициент Зеебека, σ и $\kappa = \kappa_{1} + \kappa_{e} + \kappa_{b}$ - удельные электропроводность и теплопроводность, $K_{\rm i}$, $K_{\rm e}$ и $K_{\rm b}$ – «решеточная», «электронная» и биполярная составляющие теплопроводности), определяющая эффективность работы термоэлектрических преобразователей энергии (ТЭП), также оказывается тесно связанной с E_{σ} ТЭМ [3 - 6]. На рис.1а показаны температурные параметром зависимости приведенной термоэлектрической добротности ZT ряда образцов n- и р-типа проводимости, характерные для большинства ТЭМ (кривые 1- 3). Эти зависимости (рис.1а) имеют максимумы при температуре T_{max}= T((ZT)_{max}), связанные с переходом образцов к собственной проводимости.

При развитии собственной проводимости положение T_{max} на шкале температур (рис.1) в первую очередь зависит от величины E_g и при E_F = const (здесь E_F – энергия Ферми) обычно сдвигаться в область высоких температур *c* ростом E_g образцов [6-8]. С другой стороны, при условии E_g = const положение T_{max} на шкале температур может сдвигаться в сторону высоких температур, что часто используется разработчиками ТЭМ для расширения рабочего интервала температур образцов.

Существуют эмпирическое соотношение

 $T_{\text{max}} = E_g / b k_0$, (2) связывающие величины $T_{\text{max}} = E_g$, в ограниченных интервалах изменения E_g образцов (здесь b = (4-6) [4], либо b = (5-10)) [5 - 6]. В то же время, рассмотрение расширенного интервала изменения $E_g = 0 - 1,2$ эВ, соответствующего рабочему интервалу современным ТЭМ, показывает,

что зависимость $T_{\text{max}} = f(E_g)$ имеет более сложный вид, чем предсказывает

соотношение (2) (рис.2) [9, 10].

Рис.1. Температурные зависимости безразмерной добротности *ZT* ТЭМ (а) (1 - *n*- $Bi_2Te_{2.7} Se_{0.3} < I$, In>; 2 - *n*- $Mg_2Si_{0.4}Sn_{0.6}$; 3 - *p* - Ge-Si. E_g , эВ: 1 - 0,17; 2 - 0,6; 3 - 1 [3-4]).

Рис.2. Зависимости T_{max} от E_{g} кристаллических ТЭМ ($E_{F}^{*} < 1$ -3). $1 - 2 - E_{g} = bk_{0}T$, b: 1 - 5; 2 - 10. Материалы (в порядке роста E_{g}). 3 - n-тип (BiSb, Bi₂Te₃, PbTe, CoSb₃, SiGe); 4 - p-тип (BiSb
-Sn>, Sb₂Te₃, PbTe, TAGS, GeTe, SiGe, Cu_{1.99}Se) [9].

Согласно рис.2, при увеличении в интервале $E_g < 0,4$ эВ величины $T_{\text{max}} = f(E_g)$ возрастают по линейным законам (кривые 1 и 2). Однако при $E_g > 0,4$ зВ наблюдается отклонение от линейных законов (2) и снижение T_{max} (кривые 3 и 4, рис. 2). Снижение T_{max} испытывают образцы как р - (кривая 4, рис.2), так и п - типа проводимости (последние с некоторым запаздыванием) [9]. Отклонение величины $T_{\text{max}} = f(E_g)$ от линейной зввисимости наблюдалось нами также для сплавов *n*- (Bi₂Te_{2.7}Se_{0.3})_{1-x}(In₂Te₃)_x и *n*- (Bi₂Te_{2.85}Se_{0.15})_{1-x}(In₂Te₃), легированных микродобавками In и SbI₃ (1 и 2, рис.3) [11, 12]. Целью настоящей работы был анализ особенностей развития собственной проводимости и ее связи с положением T_{max} TЭМ на шкале температур.

Рис.3. Зависимости T_{max} от E_{g} . Сплавы: 1 -

n- (Bi₂Te_{2.7}Se_{0.3})_{1-x}(In₂Te₃)_x<SbI₃>; 2 - *n*- (Bi₂Te_{2.85}Se_{0.15})_{1-x} (In₂Te₃)_x<SbI₃>. 3 - расчет для сплава 1 по формуле (1) при b = 6 [11-12].

Развитие собственной проводимости в ТЭМ. Развитие собственной проводимости в ТЭМ ведет к снижению *ZT* материалов, в основном, за счет снижения α и роста κ_b (1) [7, 8]. Для стандартной зонной структуры в области собственной проводимости термо-э.д.с. образцов дается выражением [8]

$$\alpha = (k_0/e) \left[(1-t)/(1+t) \left(F_{r+2} / F_{r+1} \right) + t E_g^* / (1+t) + E_F^* \right].$$
(3)

(Здесь k₀- постоянная Больцмана; е- заряд электрона; t= σ_p/σ_n – отношение проводимостей носителей тока; F_{r+2} и F_{r+1} – интегралы Ферми; $E_g^* = E_g / (k_0T)$ и $E_F^* = E_F / (k_0T)$; E_g и E_F – ширина запрещенной зоны и энергия Ферми образцов, отсчитанная от края зоны).

Пренебрегая вкладом $\kappa_{\rm b}$ и дифференцируя (3) по t, получаем связь $E_{\rm F}$ и $T_{\rm max}$ в образцах

$$E_{\rm F} \sim 2 \ \left(F_{\rm r+2} \left(E_{\rm F}^{*}\right) / F_{\rm r+1} \left(E_{\rm F}^{*}\right)\right) k_0 T_{\rm max},\tag{4}$$

откуда для акустического механизма рассеяния (r=0), преобладающего в ТЭМ, при $E_{\rm F}=E_{\rm F}^{*}=0$ получаем $b \sim 2$ ($F_{\rm r+2} / F_{\rm r+1}$) ~ 4. Аналогично из формулы 4 имеем $b \sim 8$ и 14 и для $E_{\rm F}^{*}=5$ и 10 и r=0, соответственно. Поскольку для сплавов (рис.2) имеем $E_{\rm F}^{*}<1$ - 3, спады на зависимостях $T_{\rm max}$ от $E_{\rm g}$ не могут быть объяснены только ростом $E_{\rm F}$ образцов с ростом $E_{\rm g}$.

Зависимости T_{max} от E_{g} кристаллических ТЭМ (рис.4) были сопоставлены с зависимости средней длины свободного пробега $\lambda_{\text{e}}/$ а электронов (1) и дырок (2) при температуре T_{max} (рис.4) [13-15]. Согласно рис.4, с ростом E_{g} в ТЭМ происходит переход $\lambda_{\text{e}} \rightarrow a$ (здесь λ_{e} - средняя длина свободного пробега электронов (дырок), $a \sim 3$ Å - межатомное расстояние). При переходе $\lambda_{\text{e}} \rightarrow a$ изменяется механизм переноса электронов (дырок) в образцах от «зонного» к «диффузионному, что объясняется двуканальной зонной моделью ТЭМ. (рис.5) [9].

Рис.4. Зависимости от $E_{\rm g}$ ТЭМ средней длины свободного пробега $\lambda_{\rm e}/a$ электронов (1) и дырок (2) при температуре $T_{\rm max}$. Материалы (в порядке роста $E_{\rm g}$): п- тип (BiSb, Bi₂Te₃, PbTe, CoSb₃, Ag₂Te, Ag₂S, SiGe); р- тип (BiSb<Sn>, Sb₂Te₃, PbTe, TAGS, GeTe, SiGe, Cu₂S, Cu_{1.99}Se) [13-15].

В результате перехода $\lambda_e \rightarrow a$ подвижность основных носителей в образцах понижается, а величина *t* увеличивается, соответственно начало собственной проводимости в образцах сдвигается в сторону низких температур. При этом различие в кривых $T_{\text{max}} = f(E_g)$ для образцов п - и р-

типов проводимости (кривые 3 и 4, рис.2), объясняются большими «стартовыми» значениями λ_e / a для электронов (кривые 1 и 2, рис.4).

С изменением величины *t* при легировании образцов связаны также особенности зависимостей T_{max} от E_{g} , наблюдавшиеся для сплавов *n*-(Bi₂Te_{2.7}Se_{0.3})_{1-x}(In₂Te₃)_x<SbI₃> (1) и *n*- (Bi₂Te_{2.85}Se_{0.15})_{1-x}(In₂Te₃)_x<SbI₃> (2) (рис. 3). Анализ зависимостей (кривые 1 и 2, рис. 3) показал, что они не связаны с изменением E_{g} образцов (кривая 3).

Рис.5. Двуканальная зонная модель ТЭМ. Зоны: v – валентная; с – проводимости. Каналы: 1 – «зонный» ($\lambda_e > a$), 2 – «диффузионный» ($\lambda_e = a$). Параметр рассеяние в каналах, *r*: 1 – 0; 2 - ½. Стрелкой показано направление сдвига границы каналов по шкале энергий с ростом рассеяния в образцах [9].

Было установлено, что основной вклад в зависимость T_{max} от E_{g} вносит увеличение подвижности μ_{n} основных носителей тока в области малого содержания In за счет уменьшения при этом содержания в твердом растворе другой легирующей добавки (I), обладающей большим сечением рассеяния носителей тока. Затем по мере дальнейшего увеличения In в твердом растворе подвижность основных носителей тока в образцах снижалась, что увеличивало параметр *t* в выражении (3). В результате, несмотря на рост E_{g} , (кривая 3, рис.3) величина T_{max} сплавов также снижалась (кривые 1 и 2) [12].

Выводы

1. Зависимости положения максимума термоэлектрической добротности (ZT)_{max} от ширины запрещенной зоны термоэлектрических материалов (ТЭМ) в интервале $E_g = 0 - 1,2$ эВ не являются линейными, и определяются не только изменением E_g , но также и изменением соотношения проводимостей основных и неосновных носителей тока *t*.

2. В случае мелкомасштабного изменения $E_{\rm g}$, сопровождающего, например, процессы микролегировании ТЭМ, положение $T_{\rm max}$ на шкале температур определяет, в первую очередь, изменение подвижностей основных и неосновных носителей тока t, что следует учитывать при оптимизации положения (ZT)_{max} образцов ТЭМ на шкале температур.

ЛИТЕРАТУРА

- 1. Физико- химические свойства полупроводниковых веществ. Справочник. Под ред. А.В. Новоселовой. М., Наука, 1979, 340 с.
- Киселева Н.Н., Дударев В.А., Коржуев М.А. Запрещенная зона твердых тел (полупроводники, диэлектрики, полуметаллы). Определение запрещенной зоны неорганических веществполупроводников, Datebase «Bandgap», b.g.imet-db.ru/about database.asp. 2007.
- 3. Охотин А.С., Ефремов А.А., Охотин В.С., Пушкарский А.С. Термоэлектрические генераторы. М., Атомиздат, 1976. 320 с.
- 4. Горбачев В.В. Полупроводниковые соединения A₂^IB^{VI}. М., Металлургия, 1980, 132 с.
- 5. Коржуев М.А. Высокочистые вещества, 1996. №2. с.74-89.
- 6. Korzhuev M.A. JEMS, 2010. v.39. № 9. p.1381 1385.
- 7. Гольцман Б.М., Кудинов В.А., Смирнов И.А. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃. М., Наука, 1972, 320с.
- 8. Аскеров Б.М. Кинетические эффекты в полупроводниках. М., Наука, 1970, 304 с.
- 9. Коржуев М.А. Термоэлектричество, 2013. №5. с.11- 24.
- Коржуев М.А. Влияние средней длины свободного пробега фононов и электронов на параметры добротности Z и мощности W термоэлектрических нано - структур. Термоэлектрики и их применения. Под ред. М.И. Федорова, Л.Н.Лукьяновой. СПб, ПИЯФ, 2012, с..99- 105.
- 11. Свечникова Т.Е., Нихезина И.Ю., Коржуев М.А. Неорганические материалы, 2011. т.47. №12. с. 1314–1318.
- 12. Свечникова Т.Е., Коржуев М.А. Термоэлектричество, 2012. №2. с. 64-75.
- Коржуев М.А., Катин И.В. А- диагностика нано структур термоэлектрических материалов. Актуальные проблемы физики твердого тела. ФТТ-2013. Минск, Ковчег, 2013, т.2., с.118-120.
- 14. Коржуев М.А. ФТТ, 1993. т.35. №11. с. 3043- 3052.
- Korzhuev M.A., Katin I.V. Nano-like effects in crystalline thermoelectric materials at high temperatures. Physics, chemistry and application of nanostructures. Nanomeeting – 2013. Ed. V.E. Borisenko, New Jersey, Word Scientific, 2013, p. 569 - 572.