## 40 СОБСТВЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ ТЕРМОЭЛЕМЕНТОВ И ВОЗМОЖНОСТИ ИХ УМЕНЬШЕНИЯ ДО БЕЗОПАСНЫХ ПРЕДЕЛОВ

Коржуев М.А., Катин И.В., Нихезина И.Ю.

## ФГБУН ИМЕТ им. А.А.Байкова РАН, Москва, E-mail: korzhuev@imet.ac.ru

При работе термоэлектрических преобразователей энергии (ТЭП) возникают электромагнитные поля (ЭМП), достигающие значительной величины [1-3]. Возникающие статические электрические поля E и напряжения  $U = E/d = \alpha \Delta T$  (здесь d – межэлектродное расстояние,  $\alpha$ - термо - э.д.с.), электрические токи I и магнитные поля H ТЭП определяются перепадом температуры  $\Delta T$  в образцах, либо задаются схемами питания ТЭП [1]. Величины  $\alpha$ , U, I и H определяются режимом работы ТЭП<sup>1</sup> и природой термоэлектрически – активных сред (ТЭАС) [2-4]. Наибольшее различие в величинах  $\alpha$ , U, I и H наблюдается между ТЭАС диэлектриками и ТЭАС - проводниками (металлами, полупроводниками и т.п.) (табл.1) [1-4].

| Таблица | 1 |
|---------|---|
| гаолица | 1 |

| N₂ | Характеристика            | Диэлектрики                                | Проводники          |  |
|----|---------------------------|--------------------------------------------|---------------------|--|
| 1  | Носители тока             | Связанные электроны и                      | Свободные           |  |
|    |                           | ИОНЫ                                       | электроны           |  |
| 2  | Природа тока              | Ток смещения, ориентации                   | Ток проводимости    |  |
|    |                           | диполей и т.п.                             |                     |  |
| 3  | Величина тока, I, А       | до 10 <sup>-6</sup> и менее                | до 1-10 и более     |  |
|    |                           | ~ 1- 10 (пробой)                           |                     |  |
| 4  | Напряжение, U, B          | до 10 <sup>3</sup> и более                 | < 10 <sup>-1</sup>  |  |
| 5  | Удельное сопро-           | до 10 <sup>15</sup>                        | ~10-7               |  |
|    | тивление, <i>р</i> , Ом.м | 10 <sup>1</sup> -10 <sup>-4</sup> (пробой) |                     |  |
| 6  | Термо - э.д.с. α, В/К     | до 10 и более                              | $10^{-6} - 10^{-4}$ |  |

Сравнительные характеристики ТЭАС – диэлектриков и проводников [4]

Для ТЭАС - диэлектриков характерны большие электрические поля E и напряжения U, при этом рабочие токи I и связанные с ними статические магнитные поля H имеют незначительную величину (табл.1). С другой стороны, в ТЭАС - проводниках величины E и напряжения U

малы, зато I и H могут достигать большой величины (табл.1). Для ТЭАС со смешанной электронно-ионной проводимостью  $\alpha$ , U, I и H имеют промежуточные значения [4]. Целью настоящей работы было оценить характерные значения ЭМП различных ТЭАС и рассмотреть возможности их уменьшения до безопасных пределов.

Электрические поля Е. На рис.1 показаны эквивалентные цепи ТЭП - диэлектриков (а) и проводников (б). В качестве эквивалентного источника тока для диэлектриков использован перезаряжаемый конденсатор C (a), а для проводников – источник постоянного тока U (б). В цепи (б) внутреннее сопротивление r<sub>i</sub> определяет ток короткого замыкания термопары  $I_{\text{max}}$ , а  $r_i \sim U/I_{\text{max}}$  в цепи (а) - скорость разрядки С (здесь  $I_{\text{max}} \sim Q/\tau_{\text{M}}$ ; Q = qS; q - поверхностная плотность заряда;  $\tau_{\text{M}} = \varepsilon_{\text{r}} \cdot \varepsilon_0 \cdot \rho$  максвелловское время релаксации,  $\varepsilon_0 = 8.85 \ 10^{-12} \ \Phi/\text{M}$  и  $\varepsilon_r$  - электрическая постоянная и относительная диэлектрическая проницаемость, *р* - удельное сопротивление материала). В случае «безобкладочных» конденсаторов С параметр  $r_i$  (рис.1а) имеет большую величину, так что «заряженные» ТЭАС – диэлектрики обычно оказываются практически безопасными для человека (рис.2а и 2б). Также безопасны для человека и ТЭАС проводники, использующие низкие рабочие напряжения U (табл.1). В результате при прикосновении к образцам ТЭАС (рис.2) оператор обычно не ощущает действия электрического тока (табл.2). <sup>2</sup> Однако, в случае использования металлических обкладок C ( $\tau_{M} \sim 10^{-18}$ с и  $r_i \rightarrow 0$ ) поражающая способность ТЭАС – диэлектриков резко возрастает [3, 4].



Рис.1. Эквивалентные цепи ТЭП с диэлектрическими (а) и проводящими ТЭАС (б). Здесь R,  $R^*$  и  $r_i$  – сопротивления нагрузки, утечки и внутреннее ТЭП; I и  $I^*$  - токи нагрузки и утечки.

**Магнитные поля Н.** Из-за малости токов в ТЭАС – диэлектриках (табл.1) создаваемые ими магнитные поля H обычно пренебрежимо малы ( $H < 10^{-6}$  Э). Исключение составляют процессы «зарядки»/ «разрядки» ТЭАС - диэлектриков, а также электрического пробоя образцов [1-4]. Так при исследовании процесса воздушного пробоя обычного пьезоэлемента

<sup>&</sup>lt;sup>1</sup> Холостой ход (xx) – I= 0; короткое замыкание (кз) - I=  $I_{max}$ ; максимальная мощность  $W^{max}$ =  $(I \cdot U)_{max}$  и кпд ( $Z_{max}$ ) [2].

<sup>&</sup>lt;sup>2</sup> При оценках полагали, что сопротивление человеческого тела  $R = 10^{-4}$  Ом [3].

мы наблюдали кратковременные потоки энергии ЭМП, превышающие безопасные пределы ( $P < 5 \text{ мBt/см}^2$ ) (рис.3) [5].



Рис.2. «Заряженные» образцы сургуча ( $\tau_{M} \sim 10^5$  с,  $I \sim 10^{-14}$ ) (а) и турмалина ( $\tau_{M} \sim 10^3$  с,  $I \sim 10^{-12}$  A) (б) («безобкладочные» конденсаторы,  $U \sim 10^2$ -  $10^3$  B) и термобатарея C3-4 II под напряжением  $U \sim 1B$  (I < 0,1 mA) (в).

Таблица 2

Уровни безопасности при воздействии постоянных электрических и магнитных полей на человека [5]<sup>3</sup>

| Характеристика         | Действующее          | Проходящий         | Магнитное поле, |  |
|------------------------|----------------------|--------------------|-----------------|--|
|                        | напряжение $U$ , В   | ток, <i>I</i> , мА | Н, Э            |  |
| Порог чувствительности | 3- 30                | 1 - 5              | ~ 0,01**        |  |
| Опасное значение       | >12                  | 20 - 30*           | 300- 700        |  |
| Смертельное значение   | $50 - 35 \cdot 10^3$ | 50 - 100           | Не установлено  |  |

\* «Неотпускающий» (парализующий) ток; \*\* - «метеочувствительные» люди



Рис.3. Разряд пьезоэлемента ( $U \sim 3 \text{ кB}$ , длина дуги l=3-4 мм) (1). Плотность потока энергии ЭМП в момент разряда:  $2-P \ge 5 \text{ мBT/cm}^2$ ;  $3-P < 5 \text{ мBT/cm}^2$ ;  $X \sim 8-10 \text{ мм}$ . Измеритель - тестер MS-48 M

С другой стороны, для ТЭАС - проводников имеем  $I \sim 1-10^3$  А (табл.1) [1, 2]. При этом магнитные поля H в короткозамкнутых ТЭП

специальной конструкции могут достигать значительной величины (*H*.=  $8I(a^2+b^2)^{1/2}/(4\pi ab) \sim 10^5$  А./ м ~ 1 кЭ) (рис.4а) [6]. Согласно [6], эффективность преобразования  $I \rightarrow H$  в ТЭП при малых  $\Delta T$  описывается «коэффициентом тока»  $\chi = j/q = \alpha/(\rho \cdot \kappa + \alpha^2 T) = (Z/\alpha)/(1+ZT)^{-1} = Y/(1+ZT)$ . (Здесь  $Z = \alpha^2/\rho \cdot \kappa$  – термоэлектрическая добротность;  $\alpha, \rho$  и  $\kappa$  – термо - э.д.с., электросопротивление и теплопроводность ветвей; T – температура;  $Y = \alpha/\rho \cdot \kappa = Z/\alpha$  – параметр «магнитотворной» способности ТЭАС). При этом максимум  $\chi$  ТЭАС - проводников достигается при более высоких концентрациях носителей тока *n* в образцах, чем  $Z_{max}$  и  $W_{max}$  (рис. 36). В табл.3 приведены коэффициенты Y и  $\chi$  различных металлов и вырожденных полупроводников. Из табл.3 видно, что «магнитотворная» способность ряда полуметаллов и сплавов действительно оказывается большей, чем для полупроводников с высокими Z.



Рис.4. а - Конструкция ТЭП для получения сильных магнитных полей [11]. б - термоэлектрические характеристики проводящих ТЭАС в зависимости от концентрации носителей тока *n*. 1 -  $\alpha$ ; 2 - Z=  $\alpha^2/\rho \kappa$ ; 3 - W=  $\alpha^2/\rho$ ; 4 - Y=  $\alpha/\rho \kappa$ ; 5 - $\rho^{-1}$ ; 6 -  $\kappa = \kappa_L + \kappa_c$ ; 7 -  $\kappa_h$  - теплопроводность кристаллической решетки;  $\kappa_e$  – электронная составляющая теплопроводности.

Таблица 3

| Коэффициенты «магнитотворной» способности ТЭАС – проводников (Т= 300 К |        |            |      |        |                                 |      |                                     |
|------------------------------------------------------------------------|--------|------------|------|--------|---------------------------------|------|-------------------------------------|
| Материал                                                               | Cu     | Константан | Bi   | Копель | Bi <sub>2</sub> Te <sub>3</sub> | GeTe | Si <sub>0,7</sub> Ge <sub>0,3</sub> |
| ZT                                                                     | 0,0001 | 0,03       | 0,19 | 0,04   | 0,9                             | 0,07 | 0,09                                |
| <i>Y</i> , 1/B                                                         | 0,24   | 6,2        | 7,9  | 10     | 14                              | 4    | 2,5                                 |
| χ, 1/ B                                                                | 0,24   | 6,2        | 6, 6 | 10     | 7                               | 3,7  | 2,3                                 |

На рис.5 показана термопара Ві – Си, разработанная нами для демонстрации возможности получения магнитных полей  $H \sim H_3$  за счет тепла тела человека [4]. Электрические сопротивления плеч термопары составляли  $R_{\rm Cu}$ = 0,00016 Ом,  $R_{\rm Bi}$ = 0,00001 Ом, термо-э.д.с.  $\alpha$ = 80 мкВ/ К, площадь рамки S=  $a \cdot b$ = 2x5 см<sup>2</sup>. При нагреве стыка термопары от внешнего источника на  $\Delta T_0 \sim 12$  К (здесь  $\Delta T_0$  – разность температур воздуха и тела

<sup>&</sup>lt;sup>3</sup> Деструктивная работа тока для организма человека составляет  $A \ge 100$ - 150 Дж, время полной деструкции тканей под действием импульсных магнитных полей амплитудой  $H \sim 4 - 40$  A/м (скважность 50- 70 мкс, время экспозиции ~ 1,5- 3 часа в сутки) - 3 - 4 месяца (опыты на животных) [5].

<sup>&</sup>lt;sup>4</sup> Магнитное поле Земли составляет  $H_3 = 0$ , 65; ~0,5 и 0, 35 Э на магнитном полюсе, в районе Москвы и магнитном экваторе соответственно (1Э = 79, 6 А/м).

человека) магнитная стрелка, первоначально ориентированная по направлению  $H_3$ , поворачивалась на угол  $a^0 \sim 55^0$ , при этом магнитное поле в центре контура (рис.5а) достигало  $H \sim H_3$ ·tg  $a^0 \sim 0.7 \ \Im \sim 1.4 \cdot H_3 > H_3$ . Однако при нагреве термопары рукой получали существенно меньшие значения  $a^0 \sim 30^0$ ,  $\Delta T \sim \Delta T_0 \cdot \xi_{\pi\pi} / [(\xi_{\pi\pi} + \xi_{\kappa \sigma \pi}) \cdot A] \sim 4 \text{ K и } H \sim 0.3 \ \Im \sim 0.6 \ H_3$ , что определялось тепловыми потерями, связанными с высоким тепловым сопротивлением кожи человека ( $\xi_{\kappa \sigma \pi} / S \sim 440 \text{ cm}^2 \cdot \text{K} / \text{Bt}$ ) [7]. (Здесь  $\xi_{\pi\pi}$  и  $\xi_{\kappa \sigma \pi}$ – теплопроводности ветвей ТЭП и кожи человека,  $A \sim 1.2$  – коэффициент, описывающий потери на стыках за счет выделения тепла Пельтье и Джоуля). Результаты опыта (рис.5а) показывают, что при размещении ТЭП близости тела человека (см., например, б и в, рис.5) необходимо принимать особые меры предосторожности.



Рис.5. а - Короткозамкнутая термопара Bi – Си для получения магнитных полей за счет тепла тела человека. [3] .б – часы с термоэлектрическим источником питания, в – автомобильное кресло с термоэлектрическим кондиционером [7].

Паразитные переменные электромагнитные поля. При исследовании работы ТЭП нами обнаружены паразитные переменные электромагнитные поля (ПЭМП) (50 Гц), окружающие в ряде случаев модули и подводящие провода (1-3, рис.6). Эти ПЭМП уже на расстояниях X < 6- 15 см от ТЭП превышали предельно допустимые значения по плотности потока энергии P > 5 мВт/см<sup>2</sup> (2, 3, рис.6). ПЭМП наблюдались при использовании источников питания с двухпроводными линиями (на входе и/или на выходе), которые не обеспечивали необходимой фильтрации напряжения. Причиной появления ПЭМП является перезаряжающаяся емкость подводящих проводов ((+) и (-), г, рис.6). Нами замечено, что эти ПЭМП полностью исчезают при питании ТЭП от трех - проводных линий (д, рис.6)), либо от аккумуляторов. Другие методы борьбы с ЭМП, позволяющие уменьшить поражающие факторы ТЭП до безопасных пределов, показаны на рис.6 (а - 3).



Рис.6. Переменное ЭМП вокруг работающего модуля C5-1 II (1) (Области: 2 –  $P \ge 5 \text{ MBT/cm}^2$ ; 3 –  $P < 5 \text{ MBT/cm}^2$ ; X = 6- 15 см, измеритель - тестер MS-48 M) и схемы компенсации ЭМП ТЭП: а, б – бифилярное включение ветвей; в, 3 – защитное экранирование и заземление; г - трех - проводная линия питания.

## Выводы

1. Параметры термоэлектрических преобразователей (ТЭП), использующих ТЭАС - диэлектрики и ТЭАС - проводники, существенно различаются; для первых характерны большие электрические поля *E* и напряжения *U*, для вторых - большие токи *I* и магнитные поля *H*.

2. Во всех случаях возникает необходимость защиты от вредных воздействий ЭМП ТЭП, в особенности, при размещении ТЭП вблизи электронных схем и тела человека.

3. Основными методами защиты от ЭМП ТЭП являются: удаление потребителей на безопасное расстояние, экранирование и заземление ТЭП, использование бифилярных цепей и трех - проводных линий питания.

## ЛИТЕРАТУРА

- 1. Поздняков Б. С, Коптелов Е. А. Термоэлектрическая энергетика. М., Атомиздат, 1974, 264 с.
- 2. Манасян Ю.Г. Судовые термоэлектрические устройства и установки Л.: Судостроение. 1968. 284 р.
- 3. Най Дж. Физические свойства кристаллов. М. Мир. 1967, 386 с.
- 4. Korzhuev M.A., Katin I.V. Fizica si Tehn. Moderne, т. 10. №3-4, 2012. p.75-92.
- 5. Манойлов В.Е. Основы электробезопасности. Л.: Энергоатомизд. 1991. 480 с.
- 6. Плеханов С.И., Тереков А.Я. Вклад члена- корреспондента РАН Н.С. Лидоренко в развитие термоэлектричества в России. В сб.: Николай Степанович Лидоренко. М., ОАО НПО «Квант», 2011, с.3- 25.
- Leonov V., Yullers R.J.M. Thermorlrctric generators on Living Beings. Proc. 5<sup>th</sup> European Conf. Thermoelectrics (ECT- 2007). Odessa, Thermion. 2007. p. 47-52.