57

ТВЁРДЫЕ РАСТВОРЫ В СИСТЕМАХ Bi_2Se_3 - Sm_2Se_3 , Sb_2Se_3 - Sm_2Se_3 и Bi_2Se_3 -SmSe И ИХ СВОЙСТВА

Андреев О. В.¹, Инглизян П. Н.², Щурова М. А.¹, Калиев Д. И.¹

¹Тюменский государственный университет, Тюмень, Россия ²Сухумский физико-технический институт, Сухуми, Абхазия

E-mail: margarita.shurova@list.ru

Цель исследования – создание новых термоэлектрических материалов на основе селенидов с конгруэнтным характером плавления (Bi₂Se₃, Sb₂Se₃) в их сочетании с селенидами самария (Sm₂Se₃, SmSe). Для этого необходимы надёжные сведения о протяжённости твёрдых растворов на их основе, а также отработка методик синтеза данных сплавов. Сведения о фазовых равновесиях и свойствах образующихся фаз в системах Bi₂Se₃-Sm₂Se₃ [1, 2] и Sb₂Se₃-Sm₂Se₃ [1], а также Bi₂Se₃-SmSe [3] противоречивы. Согласно литературным данным в них образуются сложные тройные селениды, сведений о которых, однако, не обнаружено ни в одной из информационных баз. Протяжённости твёрдых растворов определены ориентировочно. Не обнаружено сведений по изменению термоэлектрических характеристик фаз в областях твёрдых растворов, не изучалось влияние легирующих компонентов для целенаправленного изменения электрофизических характеристик фаз.

Все образцы синтезировались из простых веществ: висмута Ві Ви-0000, селена Se ос.ч 17-4, самария Sm См М-1 и сурьмы Sb Cy-0000 ампульным методом. Образцы последовательно выдерживали при 400°C, затем при 700-800°C. Часть образцов получена в литом, часть – в частично спечённом виде.

Система Bi₂Se₃-Sm₂Se₃

Образцы, содержащие 0, 1, 3, 5, 7, 10 мол. % Sm_2Se_3 отожжённые при температуре 550°С, по данным микроструктурного анализа (МСА) (рис. 1) и рентгенофазового анализа (РФА) (рис. 2) являются однофазными.

В соединении Bi₂Se₃ ионы висмута Bi³⁺ имеют координационное число (KЧ) = 6 [4-6] и г(Bi³⁺) = 1,030 Å [7]. В условиях синтеза образуется низкотемпературная модификация α -Sm₂Se₃. Координационное число (КЧ) иона самария Sm³⁺ в α -Sm₂Se₃ равно 6 [7]. Ионный радиус Sm³⁺ для KЧ = 6 равен 0,958 Å. Близость ионных радиусов катионов (различие составляет для KЧ(Sm³⁺) = 6; 7,0 %) определяет незначительное изменение параметров элементарной ячейки Bi₂Se₃ в области твёрдого раствора в сторону уменьшения (рис. 3). Параметры элементарной ячейки

изменяются немонотонно. Формула твёрдого раствора на данный момент может быть представлена как $Bi_{2-2x}Sm_{2x}Se_3$ (x = 0-0,10).

Рис 1. Микроструктура образцов системы Bi_2Se_3 - Sm_2Se_3 . а) – 1 мол. % Sm_2Se_3 ; б) – 10 мол. % Sm_2Se_3 ; в) – 20 мол. % Sm_2Se_3 ; г) – 40 мол. % Sm_2Se_3 . Изображённые на фотографиях фазы обозначены: 1 – твёрдый раствор на основе Bi_2Se_3 ; 2 – твёрдый раствор на основе α - Sm_2Se_3 .

В образцах состава 20, 30 и 40 мол. % Sm_2Se_3 по данным MCA и РФА в равновесии находятся твёрдые растворы на основе Bi_2Se_3 и α -Sm_2Se_3.

ДРОН-7, Си K_{α} -излучение ($\lambda = 1.5406$ Å), Ni-фильтр

Система Sb₂Se₃-Sm₂Se₃

Образцы, содержащие 1, 3, 5, 7 мол. % Sm_2Se_3 по данным MCA (рис. 4) и РФА (рис. 5), являются однофазными.

В соединении Sb₂Se₃ ионы Sb³⁺ имеют координационное число (KЧ) = 7 [8] и $r(Sb^{3+}) = 0,773$ Å.

Рис. 3. Динамика изменения параметров элементарной ячейки для Bi₂Se₃

В условиях синтеза образуется низкотемпературная модификация α -Sm_2Se_3. Ввиду того, что радиус Sm^{3+} в данной модификации Sm_2Se_3 больше радиуса Sb^{3+} в Sb_2Se_3 (рис. 6) наблюдается незначительное увеличение параметров элементарной ячейки по сравнению с чистым Sb_2Se_3.

Рис 4. Микроструктура образцов системы Sb_2Se_3 - Sm_2Se_3 . а) – 1 мол. % Sm_2Se_3 ; б) – 25 мол. % Sm_2Se_3 . Изображённые на фотографиях фазы обозначены: 1 – твёрдый раствор на основе Sb_2Se_3 ; 2 – твёрдый раствор на основе α - Sm_2Se_3 .

Область твёрдого раствора распространяется до 5 мол. % Sm₂Se₃. Параметры элементарной ячейки Sb₂Se₃ для образца с содержанием 7 мол. % Sm₂Se₃ (a = 11,684 Å, b = 11,785 Å, c = 3,968 Å, V = 546,41 Å³) практически не отличаются от таковых для чистого Sb₂Se₃ (поэтому его параметры и не отображены на рис. 6), его рентгенограмма имеет слишком большой фон, что свидетельствует о выделении второй фазы – α -Sm₂Se₃, хотя его рефлексы и не обнаруживаются на рентгенограмме в явном виде. Предварительно формула твёрдого раствора может быть представлена как Bi_{2-2x}Sm_{2x}Se₃ (x = 0-0,05). Таким образом, ввиду достаточно большого различия ионных радиусов Sb³⁺ и Sm³⁺ в α -Sm₂Se₃ (r(Sm³⁺, KЧ = 6) больше r(Sb³⁺) на 24%) растворимость α -Sm₂Se₃ в чистом Sb₂Se₃ довольно низка.

Образцы, содержащие от 10 до 40 мол. % Sm_2Se_3 , по данным РФА и MCA являются двухфазными и образованы твёрдыми растворами на основе Bi_2Se_3 и α -Sm_2Se_3.

Рис. 5. Дифрактограммы образцов разреза Sb_2Se_3 - Sm_2Se_3 . Химические составы указаны в подписях. Условия съёмки: дифрактометр ДРОН-7, Си K_{α} -излучение ($\lambda = 1.5406$ Å), Ni-фильтр.

Системы Bi₂Se₃-Sm₂Se₃ и Sb₂Se₃-Sm₂Se₃ образованы изоформульными соединениями, в которых ионы сурьмы, висмута и самария трёхвалентны, с близкими значениями ионных радиусов. Данные факторы позволяют считать, что на основе Sb₂Se₃ и Bi₂Se₃ образуются твёрдые растворы типа замещения, в котором с изменением химического

состава образцов ионы самария замещают ионы висмута и сурьмы в их кристаллографических позициях. На всех дифрактограммах отожжённых или охлаждённых из расплава однофазных образцов изученных систем присутствуют только рефлексы твёрдых растворов на основе Sb₂Se₃ и Bi₂Se₃. Изменяется интенсивность ряда рефлексов, но все соответствующие рефлексы на дифрактограммах присутствуют. На фотографиях шлифов не наблюдается никаких зёрен вторых фаз. На всех дифрактограммах отожжённых или охлаждённых из расплава двухфазных образцов присутствуют только рефлексы твёрдых растворов на основе Bi₂Se₃ (Sb₂Se₃) и на основе α -Sm₂Se₃. На фотографиях шлифов присутствуют зёрна твёрдого раствора на основе α -Sm₂Se₃ тёмно-коричневого цвета.

Изменяется интенсивность ряда рефлексов, но все соответствующие рефлексы на дифрактограммах присутствуют. На фотографиях шлифов не наблюдается никаких зёрен вторых фаз. На всех дифрактограммах отожжённых или охлаждённых из расплава двухфазных образцов присутствуют только рефлексы твёрдых растворов на основе Bi_2Se_3 (Sb_2Se_3) и на основе α - Sm_2Se_3 . На фотографиях шлифов присутствуют зёрна твёрдого раствора на основе α - Sm_2Se_3 тёмно-коричневого цвета.

Рис. 6. Динамика изменения параметров элементарной ячейки для Sb₂Se₃.

Система Bi₂Se₃-SmSe

Образцы, содержащие 0,5; 1,0; 1,5; 2,0; 3,0; 5,0 мол. % SmSe, по данным MCA и PФA являются однофазными. Протяжённость твёрдого раствора на основе Bi_2Se_3 при температуре 25°C гарантировано составляет 5 мол. % SmSe, однако, по нашим оценкам, она больше указанной в работе [3] и может составлять около 7 мол. % SmSe. Образцы, содержащие 14, 30, 33, 40, 50 мол. % SmSe, согласно данным MCA и PФA являются гетерогенными. Разрез Bi_2Se_3 -SmSe является неквазибинарным. Коннода проходит в нём от α -Sm₂Se₃ к соединениям системы Bi-Sm-Se.

Таблица.

~

Электрофизические характеристики исследованных образцов								
Тг, °С	Tx, °C	ΔT, °C	Tcp, °C	α, мкВ/град	р, 10 ⁻⁴ Ом∙см	æ, 10 ⁻² Ватт /(см·град)	(α ² /р)·10 -6, Ватт/см- град ²	Z, 10 ⁻⁴ 1/град
100% Bi ₂ Se ₃								
60,0	44,2	15,8	52,1	69,14	13,42	1,72	3,56	2,08
118,3	79,6	38,6	99	75,4	14,81	1,74	3,84	2,21
170,7	130,4	40,3	150,5	82,58	17,31	1,79	3,94	2,2
219,4	179,9	39,5	199,7	85,5	22,07	1,47	3,31	2,25
269,5	230,4	39	250	89,15	25,86	1,38	3,07	2,22
321,7	280,1	41,6	300,9	94,02	27,13	1,65	3,26	1,98
99% Bi ₂ Se ₃ 1% SmSe								
60,3	43,4	16,9	51,8	66,1	8,14	1,79	5,4	3
120	79,9	40,1	99,9	71,62	8,88	1,77	5,78	3,27
170,2	130	40,2	150,1	79,21	9,88	1,75	6,35	3,63
220	179,3	40,7	199,7	83,17	11,16	1,67	6,28	3,76
270	230	40	250	89,58	13,04	1,6	6,15	3,84
320	280,1	39,9	300,1	96,93	15,48	1,58	6,07	3,85
97% Bi ₂ Se ₃ 3% SmSe								
60	42,8	17,2	51,4	60,8	14,35	1,29	2,6	2
120,3	80	40,4	100,2	67,15	15,7	1,26	2,9	2,3
170	130	40	150	75,41	17,64	1,26	3,22	2,56
219,9	180	39,9	199,9	80,79	19,96	1,23	3,27	2,66
270,8	230	40,8	250,4	87,34	22,75	1,16	3,35	2,88
320	280,1	39,9	300	95,95	26,82	1,17	3,43	2,92
60	42,8	17,2	51,4	60,8	14,35	1,29	2,6	2
120,3	80	40,4	100,2	67,15	15,7	1,26	2,9	2,3

Для образцов составов 0, 1 и 3 мол. % SmSe в Сухумском физикотехническом институте получены данные по изменению электрофизических характеристик, которые представлены в таблице. Все синтезированные образцы имеют полупроводниковый тип проводимости, являясь полупроводниками n-типа. Коэффициент Зеебека возрастает, теплопроводность уменьшается. Несмотря на увеличение удельного сопротивления с ростом температуры, термоэлектрическая добротность образцов уменьшается. Значения коэффициента Зеебека для полученного нами Bi_2Se_3 ниже литературных данных для Bi_2Se_3 , полученного ампульным методом, для которого α больше 150 мкВ/град [9].

ЛИТЕРАТУРА

- Садыгов Ф. М., Рустамов П. Г., Мехтиева С. А., С. М. Гаджиев, О. М. Алиев, Ч. И. Абилов. Физико-химическое исследование системы Sm₂Se₃-Sb₂Se₃(Bi₂Se₃). Тезисы докладов V Всесоюзной конференции по физике и химии редкоземельных полупроводников (Саратов, 29-31 мая 1990 г.). Саратов. 1990. С. 41.
- Садыгов Ф. М. Журнал неорганической химии. 1993. Том 38. № 6. С. 1065-1070.
- Ильясов Т. М., Садыгов Ф. М./Неорганические материалы. 1990. Том 26. № 11. С. 2276-2279.
- Kristie J. Koski, Colin D. Wessells, Bryan W. Reed, Judy J. Cha, Desheng Kong, and Yi Cui/Journal of the American Chemical Society. 2012. Vol. 134. pp. 13773-13779.
- N. V. Tarakina, S. Schreyeck, T. Borzenko, C. Schumacher, G. Karczewski, K. Brunner, C. Gould, H. Buhmann and L. W. Molenkamp/Crystal Growth & Design. 2012. Vol. 27. no. 4. pp. 1913–1918.
- 6. Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang and Shou-Cheng Zhang/Nature physics. 2009. Vol. 5. pp. 438-442.
- 7. Shannon R. D. Acta Crystallography. 1976. A. 32. P. 751-767.
- Абрикосов А. Н., Банкина В. Ф., Порецкая Л. В., Скуднова Е. В., Чижевская С. Н. Полупроводниковые халькогениды и сплавы на их основе/М.: Наука, 1975. 220 с.
- Hor, Y.S., A. Richardella, P. Roushan, Y. Xia, J.G. Checkelsky, A. Yazdani, M.Z. Hasan, N.P. Ong, and R.J. Cava. Phys. Rev.2009. B 79 (19) 5208.