Implications of time-reversal symmetry for band structure and optical properties of carbon nanotubes

Goupalov S.V.*1,2

¹Jackson State University, Jackson, MS 39217, USA
²Ioffe Institute, 194021, St.Petersburg, Russia
*e-mail: serguei.goupalov@jsums.edu, goupalov@coherent.ioffe.ru

When single-particle electron states in single-walled carbon nanotubes (CNTs) are characterized by two-dimensional wave vectors with the components K_1 and K_2 along the CNT circumference and cylindrical axis, respectively, then two such vectors symmetric about a M-point in the reciprocal space of graphene are shown to be related by the time-reversal operation. We show that to each CNT there correspond five relevant M-points with the following coordinates [1]: $K_1^{(1)} = N/2R$, $K_2^{(1)} = 0$; $K_1^{(2)} = M/2R$, $K_2^{(2)} = -\pi/T$, $K_1^{(3)} = (2N-M)/2R$, $K_2^{(3)} = \pi/T$, $K_1^{(4)} = (M+N)/2R$, $K_2^{(4)} = -\pi/T$, and $K_1^{(5)} = (N-M)/2R$, $K_2^{(5)} = \pi/T$, where N and M are the integers relating the chiral, C_{h_1} symmetry, C_{h_2} , and translational, C_{h_3} , where C_{h_4} is the CNT by C_{h_4} symmetry. C_{h_5} is the CNT radius. We show that the states at the edges of the one-dimensional Brillouin zone which are symmetric about the C_{h_5} with C_{h_5} are degenerate due to the time-reversal symmetry.

We also discuss implications of the time-reversal symmetry for optical properties of CNTs [3].

In addition to the *M*-points, we obtain explicit expressions for the coordinates of the *K*-points in the reciprocal space of graphene relevant to a given CNT. If for a (n,m) CNT, (n-m) is not a multiple of 3d, where d is the greatest common divisor of n and m, then the coordinates of the relevant *K*-points (corresponding to the *K* and *K'* valleys, respectively) are $K_1 = N/3R$, $K_2 = 0$ and $K_1 = 2N/3R$, $K_2 = 0$. This case includes all semiconductor CNTs and some metal ones. In particular, all the zigzag CNTs (m = 0) belong to this case. For the armchair nanotubes (n = m) one has $K_1 = n/R$, $K_2 = \pm 2\pi/3T$. For the rest of the metal CNTs the choice is to be made between the two cases: (i) $K_1 = (N-M)/3R$, $K_2 = 2\pi/3T$ and $K_1 = (2N+M)/3R$, $K_2 = -2\pi/3T$ and (ii) $K_1 = (N+M)/3R$, $K_2 = -2\pi/3T$ and $K_1 = (2N-M)/3R$, $K_2 = 2\pi/3T$. (Which case realizes for a particular chirality turns out to be a more subtle question.) Knowing the coordinates of the relevant *K*-points greatly simplifies comparison of CNT descriptions within the zone-folding and effective-mass approaches.

- [1] S.V. Goupalov, *JETP Letters* **92**, 507 (2010).
- [2] R. Saito, G. Dresselhaus, M.S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998).
- [3] S.V. Goupalov, A. Zarifi, T.G. Pedersen, *Phys. Rev. B* 81, 153402 (2010).