Structural and physical properties of wood-derived biocarbons

<u>Smirnov B.I.</u>¹, Orlova T.S.*¹, Parfeneva L.S.¹, Popov V.V.¹, Smirnov I.A.¹, Jezowski A.², Martinez-Fernandez J.³

¹Ioffe Institute, 194021, St. Petersburg, Russia ²Institute of Low Temperature and Structural Research, Wroclaw, Poland ³Universidad de Sevilla, 41080, Sevilla, Spain *e-mail: orlova.t@mail.ioffe.ru

In the present paper we represent the results on a correlation between microstructure and physical properties of biocarbons derived from beech wood by carbonization at different temperatures T_{carb} in the range 600-2400°C. The temperature dependences of the electric resistivity ρ , thermal conductivity æ and thermoelectric power S have been studied in the temperature range 4-300 K. The structural investigation was performed by XRD at 300 K.

According to XRD data the biocarbons have bi-modal microstructure which consists of amorphous phase and nanocrystallites (of three-dimensional graphite and two-dimensional graphene). With increasing T_{carb} from 800 to 2400°C, the size of nanocrystallites increases from 10.2 to 29 Å for graphite and from 24 to 60 Å for graphene components. The amount of nanocrystallites also grows with increase in T_{carb} . It was shown that $T_{carb}\sim900$ K is critical point for the change of electrical conductivity mechanism as well as of the character of S(T) and æ(T) dependences. The dependences $\rho(T)$ for the biocarbons with $T_{carb}<900^{\circ}$ C are adequately described by the Mott law for the variable-range hopping conduction. The crossover to the conductivity characteristic of disordered metal systems is observed at $T_{carb}\geq1000^{\circ}$ C. Analysis of experimental data $\rho(T)$, S(T) and æ(T) showed that in the samples with $T_{carb}<900^{\circ}$ C the amorphous phase determines the behavior of these parameters, whereas in the samples with $T_{carb} \geq 1000^{\circ}$ C the main role belongs to nanocrystallites.

This study was supported by the Presidium of the Russian Academy of Sciences (program P-03) and the Ministry of Science and Technology of Spain (project nos. MAT 2007_30141_E and PET 2006-0658).