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THE SOLUTION OF STATISTICAL RADIATION TRANSPORT PROBLEMS 
BY THE MONTE-CARLO METHOD* 

A.YU. POTEKHIN 

A method is proposed for constructing statistical estimates for the 
characteristics of radiation described by a stochastic transport 
equation in media with relatively small fluctuations of the attenuation 
and scattering indices and an example of its application is introduced. 

1. To describe the dispersion of light in turbid media the radiation transport equation 
(r.t.e.) is widely used /l/. However in many problems of atmospheric optics, the optics of 
a photographic layer etc., the maximum scale of the statistical non-homogeneity (macroscale) 
of the medium cannot be considered as negligibly small and the r.t.e. coefficients become 
fluctuating. To find the statistical characteristics of radiation in such a situation in 
/2/ and /3/ a direct computer modelling of the realizations of the medium is used with the 
last r.t.e. solution for each of them. Other methods include analytic averaging over the 
ensemble of realizations but these have narrower limits of applicability. Thus, the Markov 
approximation /4/ supposes that the small-angled r.t.e. is true and the macroscale is much 
shorter than the mean free path of the photon. In a number of papers (see the bibliography 
in/5/) the Markov nature of the medium a1ol.g the trajectory of the photons is postulated to 
obtain closed equations. In /6/ the perturbation theory is used but the final formulae turn 
out to be too complex for calculations, as was noted in /7/. The method proposed in /7/ 
requires a knowledge of the conditions of the multipoint moments of the fluctuating parameters 
and its simplification assumes as was sbown in /8/, the homogeneity of the medium in each of 
its realizations. 

A method more successfully applied for a number of years has been the method based on 
the representation of fluctuations as a linear combination of certain functions with least 
random coefficients, /l/ and /8/. In /9/ a simple perturbation method was proposed that also 
used the triviality of the fluctuations but did not require their representation in a specific 
form. This method was taken as the basis for working out a method for the numerical evaluation 
of the statistical characteristics of radiation. 

2. We will write the r.t.e. forthebrightness I in the form /l/ and /9/ 

@.V+a(r))I(r,e)- ja.(r,8..‘)I(r,.‘)~‘+*o(r,l). (0 

Let o denote the non-random parts of the extinction coefficient and 0, the scattering co- 
efficient. The corresponding non-perturbed values of the functionals are denoted by a bar, 
and the fluctuations by a tilde, for example a-B+<. We introduce the related fluctuations 
x-%/W, x.-z/B and the stochastic perturbation operator K: 

Wf) (r, s) - j XI@, sWf(r, .ws’-X@)f@, 8). (2) 

Suppose G is an operator whose kernel 
formally considering the terms with a 
easily be obtained /9/ 

is Green's perturbation function of the r.t.e.. By 
and i in (1) as sources the iterational formula can 

here I is the solution of the initial r.t.e., the random function KI describes the local 
perturbation brightness, and GKI describes theeffectof this perturbation on the brightness 
at other points. Higher terms of the series take into account the effects of the mutual 
influence of the fluctuations. In /9/ the sufficient conditions for correctness are obtained 
(3). By multiplying (3) and then averaging we obtain the brightness moments. Thus, if (K)-0 
(the angle brackets indicate averaging over the aggregate of the realizations o,a.), then at 
a lower order of perturbation theory for the correlation function Dr~-Uild-U~)(Id we obtain 

where the indices j correspond to points of the phase space z~=(r,,sj) and the integration 
that is implied by the operators K and G is carried out over variables with repeating indices. 

3. In the final formulae (type (4)) Green's function of the r.t.e. is introduced that, 
in practice, as a rule, is not known. The proposed method of calculation enables this dif- 
ficulty to be avoided. It is based on the fact that since Gf has the meaning of the bright- 
ness, generated by the volume sources f, whose calculation by the Monte Carlo method is 
l Zh.vy&isl.Mat.mat.Fiz.,27,5,776-779,1987 8g 
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well-known, it is possible to model the corresponding trajectory instead of distinctly finding 
the kernel of each operator G and subsequent integration. We shall clarify this by the example 
of a functional (m,,. &), by considering for simplicity that the scattering and absorption 
fluctuations are single-valuedly connected by the relations 

x.(r.a,a')- xl(r)b(r,s.s'), x(r)- 
[J 

b(r,a.a')ds'-i x,(r), 1 ‘n 
where b(r, 64) is a deterministic function. Then from (2) it follows that 

(5) 

K=x,KW, (K@‘)f) (z)- s k(OJ(z, t’)f(z’)dz’, 

where 

k(‘)k~‘)-8ah-‘) b(r,s.s’)+ 8&,1)‘) i - b(r,&‘)&” [ ( 5 13 
, 

In 

and (Lo is the delta function on the unit sphere. 
Suppose k(+. 2') is the kernel of a non-perturbed integral r.t.e. /I, p.15/. We shall 

model two trajectories {z,,,*lm-0, &...,A',), i-l, 2, with identical initial intensity P(Z', 1% with 
transport intensities +(z, 2') and cut-off probability p’(r). By the standard method in /l/ it 
is easy to prove the unbiasedness of the following estimate "for absorptions": 

I)N,N?$((50~, zo*)P-'(ro', ~a")QN,'QN,2~(zN,', =N**). (5) 

where 

and of the corresponding estimate "for collisions": 

N1 N* 

Here, compared with (4) and (5) 

rp (I, z') = (K’O’I) (I) (K(O’I) (+‘)C(z, t’), 

and C(z, s')=(x,(r)x,(r')) is the correlation inhomogeneity function, assumed known. 

(8) 

4. If there is no explicit formula for solving i of the initial r.t.e. then in (6) it 
is possible, in turn, to replace the function $ by its statistical value. For this we shall 

construct two more trajectories (p'(z), r'(t, z'), p’(z), i=3, 4) according to which we shall evaluate 

the quantities I=Ge in formula (8) (@=00/a is the brightness of the sources), after which 
we shall model the action K(O), selecting the transport intenstiy r(O)(z,z') is such a way that 

the relation k(0)/r(o) is bounded. Suppose 5(z, ~')=5~(r-r')80(s, a'). Taking (8) into account we 

obtain 
$,,=(5,&, $s~)=(c(.% s~)B(zs, z&V% zz), (K(O)GQ)(+~)(K(O)G~)(zi)). 

The estimates of this functional for absorptions take in the following form: 

(9) 

If now in (6) we choose p,2=&&, i.e. taking the first and second trajectories of the point 

of phase space as source points, obtained by transport with intensity r(O) from finite points 
of the third and fourth trajectories then the singularity of (9) after substitution into (6) 
contracts and we reach the final estimate of the functional ((p~~.D<z): 

Analogous estimates for other functionals can be constructed in a similar way and also 
the conjugate local values of the brightness moments. Moreover, the estimate obtained can be 

modified using (7). Clearly, the next modification can be obtained if rl is replaced by n* 

in (7) and the value obtained forthe function rp is then used in (6), but this makes it 
necessary to construct a "second generation" trajectory (in the case under consideration the 
first and second) starting from each of the collision points on the "first generation" 
trajectories (the third and fourth). It would seem that the intermediate estimates proposed 
in /lo/ are more convenient here. 

5. As an example of the use of the proposed algorithm, results are presented in Fig.1 
of a calculation on a BESM-6 computer of the distribution of the relative fluctuations in 
brightness averaged along the line [D( I, a)/(~,*)]'~/l(z). and, for a depth s of an isotropically 
scattering layer, the boundary a=0 of which is uniformly illuminated. Parameters were taken 
that are characteristic for unexposed photosensitive layers: an optical thickness of 10, 
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Fresnel reflecting boundaries with a relative refractive index of 
1.5, and a scattering albedo of 0.90 (the solid curves) and 0.95 (the 

dashed curves). The numbers on the right are the values of the corre- 

lationradiusoftheinhomogeneityona scale of the mean free path of 
the photon 5-l. In the given example the function b in (5) is a 
constant and the dependence on its value lies within the limits of 
error (less than 10%). 

In conclusion the author expresses his thanks to Yu.A. Anokhin 
for suggesting the problem and for useful discussions. 
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TWO-LAYER COMPLETELY CONSERViTIVE DIFFERENCE SCHEMES FOR THE EQUATIONS 
OF GAS DYNAMICS IN EULER VARIABLES* 

A.V. KOLDOBA, YU.A. POVESHCHENKO and YU.P. POPOV 

A family of two-layer completely conservative difference schemes is 

constructed for the spatially one-dimensional equations of gas dynamics. 
It is possible to obtain complete conservativeness of the difference 

scheme by profiling the time weights in a space matched to the solution 

of the problem. 

1. Various semi-empirical principles play an important role when constructing effective 
difference schemes for the numerical solution of non-linear problems in mathematical physics. 

These include, in particular, the principle of complete conservativeness /l, 2/, which is 

well recommended in practice: in a difference scheme describing the behaviour of the discrete 
model of the object, in addition to analogues of the main laws of conservation (asinclassical 
conservative schemes), certain additional relations of a physical nature must be satisfied 

(in gas dynamics, for example, the balance of individual forms of energy). 
Completely conservativedifference schemes that are two-layer with respect to time, have 

been constructed for the non-stationary equations of gas dynamcis (both one-dimensional and 
two-dimensional) using Lagrangian coordinates /l, 3-5/. Attempts to construct similar schemes 
*Zh.vychisl.Mat.mat.Fiz.,27,5,779-784,1987 


