Using very-faint LMXBs to probe ultradense matter

Rudy Wijnands

Astronomical Institute "Anton Pannekoek" University of Amsterdam

July 14, 2011

Physics of Neutron Stars

St. Petersburg, Russia

Galactic LMXBs

Note the energy range used

Class	L _x (2-10 keV)	Persistent	Transient
Bright to very bright	10 ³⁷⁻³⁹ erg s ⁻¹ ≥10% L _{Edd}	• Mostly NS systems	• Mostly BH
Faint	10 ³⁶⁻³⁷ erg s ⁻¹ ~1-10% L _{Edd}	• Mostly NS systems	Mostly NSAt least some ultra-compact
Very faint	10 ³⁴⁻³⁶ erg s ⁻¹ ~0.01-1% L _{Edd}	• Only confirmed NSs	Mostly NS systems?Ultra compact?BD/planet companion?

Arbitrary, inspired by observations!

Very-faint persistent NS systems

- 1RXS J171824.2-402934 and 1RXS J173523.7-354013

 In 't Zand et al. 2005
 - ~10³⁴ and ~10³⁵ erg s⁻¹
- AX J1754.2-2754
 - Sakano et al. 2002
 - Chelovekov et al. 2007
 - Del Santo et al. 2007
 - $\sim 3 \ge 10^{34} \text{ erg s}^{-1} (2-10 \text{ keV})$

Very-faint quasi-persistent NS sources

- XMMU J174716.1-281048
 - Sidoli & Mereghetti 2003
 - Del Santo et al. 2007, 2009-11
 - Degenaar et al. 2011
 - 5 x 10³⁴ erg s⁻¹

- AX J1745.6-2901
 - Maeda et al. 1996
 - 8 hr eclipsing system
 - Swift J174535.5-290135.6
 - Kennea et al. 2006
 - $< 5 \ge 10^{35-36} \text{ erg s}^{-1}$

Very-faint transient X-ray binaries

Wijnands et al. 2006

Binary evolution and population synthesis

- What kind of binary and how are they formed?
 - Orbital period, companion star
 - Why are they so faint?
- How many in our Galaxy and where located?
 - Are we ignoring a large population or not?
 - A few arcminutes to >100 degrees from Sgr A*
 - Averaged distance from Sgr A* ~ 17 degrees
- Where are the black hole systems?
- What can we learn about NSs?

What can we learn about NSs?

• Accreting millisecond X-ray pulsars

- Thermonuclear flashes
 - New accretion rate regime
 - Peng et al. 2007
 - Cooper & Narayan 2007

SAX J1818.7+1424

5 0

In 't Zand et al. 2007

Cornelisse et al. 2003

2-28 keV

Intermediate long bursts

SLX 1737-282: Falanga et al. 2008

See talks of Jérôme Chenevez and Ed Brown

Degenaar et al. 2010, 2011

• Cooling of accretion heated neutron stars

Conclusion

- A variety of sub-luminous accreting NS LMXBs
 - Difficult to find and get high quality data
 - But making progress!
 - Finding more sources: eRosita/NuSTAR
 - LOFT to study rapid variability
 - Sensitive all-sky monitors
- New insights into fundamental (astro-)physics
 - NS properties
 - Accretion and binary evolution
 - Comparison with bright transients at very low Mdot

Comparison with bright transients

SAX J1808.-3658: In 't Zand et al. 2001

