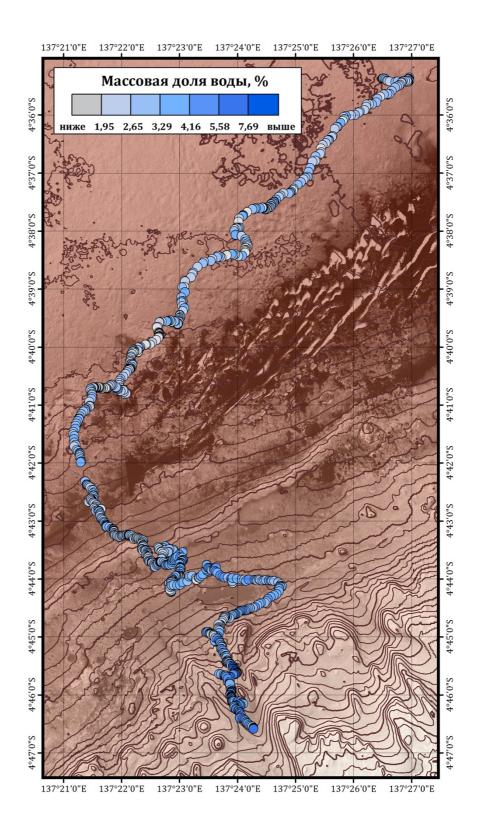
Исследования Марса: поиск воды и мониторинг радиационной обстановки


М.Л. Литвак

Институт космических исследований РАН, ул. Профсоюзная 84/32, Москва 117997, Россия

Марс – это планета Солнечной системы, к которой с начала эпохи космических исследований приковано очень большое внимание, а на ее орбите и поверхности побывали многочисленные космические аппараты, проведены десятки различных экспериментов. Перед многими из них целенаправленно ставилась задача поиска и локализации залежей воды/водяного льда. Давно считается, что поиск воды может многое рассказать об эволюции красной планеты и самой Солнечной системы и возможно привести к обнаружению следов внеземной жизни. Из практических соображений необходимо также помнить, что вода рассматривается и как важный ресурс для реализации будущих пилотируемых миссий и создания постоянно действующих баз за пределами орбиты Земли.

20 обнаружены 3a последние лет на Mapce большие залежи подповерхностного водяного льда и гидратированных минералов. Огромная роль в этом открытии принадлежит российской науке (российские эксперименты «ХЕНД» и «ФРЕНД»). На поверхности Марса, в экваториальном кратере Гейл, на борту марсохода HACA «Curiosity» работает уникальный прибор Динамическое альбедо нейтронов («ДАН»), разработанный в ИКИ РАН совместно с ВНИИА им. Н.Л. Духова [1-3]. Это не только первый в мире нейтронный детектор на поверхности Марса, но и единственная в мире космическая научная аппаратура, способная зондировать подстилающую поверхность методами нейтронного каротажа и определять содержание подповерхностной воды и некоторых химических элементов вдоль трассы движения марсохода. За более чем 10 лет наблюдений удалось построить карту распределения подповерхностной воды в составе гидратированных минералов (глины, гематиты, сульфаты) и хлора (соли) и предоставить указания на то, как на раннем Марсе могли сформироваться благоприятные условия для зарождения жизни и насколько они изменились сейчас [4-7,9].

Кроме исследования свойств поверхности, научная аппаратура «ДАН» совместно с приборами, «ХЕНД» и «ФРЕНД»), работающими на орбите Марса позволила оценить вклад нейтронной компоненты в общий радиационный фон на Марсе в условиях спокойного Солнца и во время очень сильных солнечных событий (последнее случилось в мае 2024 года). Эти результаты важны как для оценки влияния радиации на сохранение гипотетической марсианской жизни, так и для определения требований к подготовке будущих пилотируемых экспедиций [8,10].

Рис. 1. Распределение массовой доли связанной воды в составе различных минералов вдоль трассы движения марсохода «Curiosity» по данным эксперимента ДАН

Ссылки

1. Litvak M.L. et al., The Dynamic Albedo of Neutrons (DAN) Experiment for NASA's 2009 Mars Science Laboratory, **Astrobiology**. 2008. 8. 605-612.

- 2. Mitrofanov I.G., Litvak, M.L. et al., Dynamic Albedo of Neutrons (DAN) Experiment Onboard NASA's Mars Science Laboratory, **Space Science Reviews**. 2012. 170. 559-582
- 3. Grotzinger J.P. et al., Mars Science Laboratory Mission and Science Investigation, **Space Science Reviews**. 2012. 170. 5-56
- 4. Mitrofanov, I. G.; Litvak, M. L. et al., Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument **Journal of Geophysical Research: Planets**. 2014. 119. 1579-1596
- 5. Litvak, M. L et al., Local variations of bulk hydrogen and chlorine-equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity, **Journal of Geophysical Research: Planets**. 2014. 119. 1259-1275
- 6. Litvak, M. L. et al., Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover, **Journal of Geophysical Research: Planets**. 2016. 121. 836-845
- 7. Литвак М. Л., Санин А. Б. Вода в Солнечной системе, **Успехи физических наук**. 2018. 188. 865–880
- 8. Litvak, M. L. et al., Mars neutron radiation environment from HEND/Odyssey and DAN/MSL observations, **Planetary and Space Science.** 2020. 184. article id. 104866.
- 9. Litvak, M. L. et al., Depth distribution of chlorine at Gale crater, Mars, as derived from the DAN and APXS experiments onboard the Curiosity rover, **Journal of Geophysical Research: Planets.** 2023. 128. e2022JE007694.
- 10. Litvak et al., Neutron Radiation Dosimetry on Mars. Acta Astronautica. 2024. in press