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Introduction

Almost a half of century ago Unruh (1976) predicted theoretically that 

the accelerated detector in vacuum should observe the thermal 

radiation.

a
r

B
ck

a
T

π2

h
=

The effect is very subtle: for the acceleration of 1g the temperature is about 4⋅10-20 K

Despite the presence of preferred direction, a, 

the effect is believed to be isotropic!
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Distribution of the Unruh

radiation is totally isotropic

Distribution of the Unruh radiation

is anisotropic

Full consensus on isotropy/anisotropy of the Unruh radiation has not been achieved. 

Despite this fact, the presence of ``thermal signature'' in energy spectrum of Unruh 

radiation appears such ``a strong argument'' that the other properties (in particular, 

angular distribution) of Unruh radiation are also considered to be determined by the 

thermal distribution.

Thus commonly accepted point of view: the Unruh radiation is isotropic.

One of the evident and promising methods to reveal the possible Unruh radiation

anisotropy is the calculation with the model of monopole detector shielded by some

screen allowing registration of this radiation from specific directions and preventing

the registration from other directions. Despite several works (e.g. Hinton et al. 1983, 

Israel&Nester 1983, Sanchez 1985, Grove&Ottewill 1985) considering this method in

more or less degree the final answer has not been obtained due to different reasons.



Left panel: The sketch of the detection system. 

Right panel: Dependencies of screening function in polar coordinates (directivity pattern) at

observation angle θobs=300 and at width of screening function ∆θ=80.
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The integral for transition amplitude is difficult to calculate.

It has been calculated numerically and estimated analytically for massless field. 

Detector response from the Fermi golden rule:

Screened transition amplitude:

Rapidity:

Typical “inclined” width:



Thermal (equilibrium) response:
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Results

For Lorentzian Screen:

For Gaussian Screen:

Comparison of response magnitudes at θobs=900 and low energy µ:
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Typical energy scale of response decrease:

For Gaussian screen: 2.35sinθobs/∆θFor Lorentzian screen: sinθobs/∆θ



Numerically estimated dependencies of screened detector response on the observation angle θobs

at observation energies µ=0.03 (solid curves) and µ=3 (dashed curves) for different values of

Lorentzian screening function width: ∆θ=20 (red curves), ∆θ=40 (green curves), and ∆θ=80 (blue

curves). Accompanying thin curves correspond to analytical approximation.



Numerically estimated dependencies of screened detector response on the observation angle θobs

at observation energies µ=0.03 (solid curves) and µ=3 (dashed curves) for different values of

Gaussian screening function width: ∆θ=20 (red curves), ∆θ=40 (green curves), and ∆θ=80 (blue

curves). Accompanying thin curves correspond to analytical approximation.



Numerically (symbols) and analytically (smooth curves, approximation) estimated dependencies

of screened detector response on the observation energy µ at different observation angles

θobs=900 (circles, solid curves), θobs=450 (triangles, dashed curves) and θobs=50 (squares, dotted

curves) for different values of Lorentzian screening function width: ∆θ=20 (red), ∆θ=40 (green), 

and ∆θ=80 (blue). 



Numerically (symbols) and analytically (smooth curves, approximation) estimated dependencies

of screened detector response on the observation energy µ at different observation angles

θobs=900 (circles, solid curves), θobs=450 (triangles, dashed curves) and θobs=50 (squares, dotted

curves) for different values of Gaussian screening function width: ∆θ=20 (red), ∆θ=40 (green), 

and ∆θ=80 (blue). 



•The model of pointlike monopole detector shielded by a screen providing narrow

directivity pattern ∆θ<<1 has been considered. 

•The angular response (i.e. response per solid angle) of this detector on the Unruh

radiation has been calculated numerically for massive and massless scalar quantum

fields in (3+1)D space-time and estimated analytically for massless quantum field with 

typical accuracy 1 – 5% in angle interval [150;1650] and energy interval [0.03;3]. 

•It has been shown that corresponding stationary dependencies of the angular response

on observation angle in first approximation at low energies can be described by the

function ~sinθobs and, thus, demonstrate significant anisotropy of the observed Unruh

radiation. The dependencies on particle energy show that the value of angular

response decreases at energy increase with typical scale ~sinθobs/∆θ which

significantly differs from the Unruh temperature (2π)-1. 

•The specific form of distribution of the angular response over particle energy is

strongly dependent on the shape of screening function and, in any case, does not

correspond to thermal response. 

•All these features of obtained angular response confirm that the Unruh radiation

cannot be considered as thermal (equilibrium) radiation.

Conclusion



Thank you for your attention!


