Молекулы HD в межзвездной среде

Д.Н. Косенко, С.А. Балашев

ФТИ им. А.Ф. Иоффе Сектор теоретической астрофизики

> 20 ноября 2024 Санкт-Петербург

- Varshalovich & Khersonskii 1976 расчет функций охлаждения молекул HD
- Khersonskii & Varshalovich 1977 расчет коэффициентов излучения молекул HD на 112 и 56 μм
- Levshakov & Varshalovich 1985 первое детектирование молекул H₂ на больших красных смещениях
- Varshalovich et al 2001 первое детектирование молекул HD на больших красных смещениях
- Balashev et al 2009, Ivanchik t al 2010, Balashev et al 2010, Varshalovich et al 2012, Ivanchik et al 2015, Klimenko et al 2015, Balashev et al 2017 – работы, посвященные изучению абсорбционных систем, содержащих молекулы HD

Молекулы HD на больших красных смещениях

- 12 систем на z > 0 (Rawlins et al 2018; Balashev et al 2017; Noterdaeme et al 2016 ...) + 5 измерений из работы Kosenko et al 2021
- 41 система в Млечном Пути (FUSE, Copernicus; Snow et al 2008)

Красными символами показаны системы, полученные в работе **Kosenko et al 2021**, незакрашенные символы – верхние пределы на лучевые концентрации HD, зеленые символы – ранее известные системы на z > 0, желтые – измерения в Млечном Пути.

Для полностью молекуляризованного облака: $HD/2H_2 = D/H$

Магеллановы Облака

Магеллановы Облака – ближайшие спутники Млечного Пути

=

	БМО	MMO
М	$3 imes 10^9 M_{\odot}$	$3 imes 10^8 M_{\odot}$
D	50 кпк	62 кпк
i	30°	64°
Ζ	$0.5 Z_{\odot}$	$0.2 Z_{\odot}$
$v_{ m LSR}$	180 – 300 км/с	100 — 180 км/с

HD в Магеллановых Облаках

- Получены лучевые концентрации HD для 24 систем
- Получены верхние пределы на лучевые концентрации HD в 70 системах

Kosenko & Balashev 2023

Химия HD

Отношение $N_{\rm HD}/H_{\rm H_2}$ определяется физическими условиями в среде:

Уравнение баланса для HD:

$$F^{\rm HD} n_{\rm H_2} n_{\rm D^+} + R^{\rm HD} n_{\rm H}^{\rm tot} n_{\rm D} = \frac{1}{2} \chi D^{\rm HD} S^{\rm HD} (N_{\rm HD}) e^{-\sigma_{\rm g} (N_{\rm H} + 2N_{\rm H_2})} n_{\rm HD}$$

$$\frac{\textit{n}_{\rm HD}}{\textit{n}_{\rm H_2}} = \frac{\textit{dN}_{\rm HD}}{\textit{dN}_{\rm H_2}} = 2\frac{\rm D}{\rm H} \frac{1}{\textit{f}_{\rm H_2}} \left(\frac{1}{\beta^{\rm chem} \frac{\textit{f}_{\rm H_2}}{2(1-\textit{f}_{\rm H_2})} + \beta^{\rm dust}} + 1\right)^{-1}$$

Balashev & Kosenko 2020

Переходы D I/HD и H I/H₂

Z = 1 H_2 H_2 Н \longrightarrow D D HD H/H_2 D/HD наблюдения→ -4.0 переход НІ/Н₂ Изотопическое отношение D/H $D/H \times \beta_0^{dust} \alpha/4$ -4.5 [²H/2/^{0H}/0] bol -5.5

переход DI/HD

19 20 21 22

 $D/H \times \beta_0^{che}$

Z=1 14

15 16 17 18 log N_H,

-6.0-6.5

Переходы D I/HD и H I/H₂

Оценка физических условий

Предложенная модель хорошо описывает наблюдаемые значения $N_{\rm HD}$ и $N_{\rm H2}$:

Оценка физических условий в наблюдаемых системах

По измеренным значениям $N_{\rm HD}$ и $N_{\rm H_2}$ можно оценивать физические условия в наблюдаемых системах, в частности, скорость ионизации космическими лучами:

Kosenko et al 2021, 2023

Эмиссия HD

Молекула HD имеет дипольный момент, отличный от нуля, \implies ее дипольные переходы (J = 1 - 0, J = 2 - 1, ...) разрешены, поэтому изучение молекулярных облаков, содержащих HD, возможно в эмиссии:

Светимость в линии 112 μ м:

$$L \propto n_{\mathrm{HD,J=1}} \propto rac{1}{1 + \left(rac{A_{10}}{C_{10}n} + 1
ight) rac{g_0}{g_1} e^{rac{h
u_{01}}{kT}}} imes n_{\mathrm{HD}}$$

То есть при низкой металличности светимость HD увеличивается

Излучение в определенной линии от большого количества систем в заданном направлении – метод Line Intensity Mapping:

Kovetz et al 2019

Спасибо за внимание!