Прохождение гамма-всплеска через молекулярное облако: численные расчеты и наблюдения Нестерёнок А.В., ФТИ им. А.Ф. Иоффе

«Физика и астрофизика –

от фундаментальных констант до гамма-всплесков и космологии». Конференция памяти Д.А. Варшаловича и Е.П. Мазеца

Введение

Общепринятой моделью формирования гамма-всплесков является модель «файербола». Согласно этой модели «центральная машина», которая образовалась в результате коллапса массивной звезды или слияния двух компактных звезд, запускает релятивистский направленный поток плазмы (джет).

Две основные стадии формирования излучения:

- излучение в активной фазе (prompt emission) – диссипация энергии внутри релятивистского джета, фотосферное происхождение излучения.
- излучение «оптической вспышки» и послесвечения – взаимодействие джета с внешней средой, образование головной и обратной ударных волн.

(Peer, 2015)

Постановка задачи

Массивные звезды имеют короткое время жизни, поэтому взрыв массивной звезды с большой долей вероятности происходит в области своего рождения. Области звездообразования характеризуются относительно высокими плотностями межзвездного газа.

В докладе приводятся результаты численного моделирования ионизации газопылевого облака излучением гамма-всплеска. Эти результаты используются для аппроксимации наблюдаемых спектров послесвечения.

n_{H,tot} – концентрация ядер водорода (в молекулярном, атомарном или ионизованном состоянии)

Численная модель

В модели учитываются:

- ионизация атомов Н, Не;
- ионизация ионов металлов с учетом испускания Оже-электронов;
- ионизация и фотодиссоциация молекул H₂;
- поглощение УФ излучения в линиях H₂ полос Лаймана и Вернера
- испарение частиц пыли;

Излучение гамма-всплеска:

- оптическая вспышка;
- активная фаза,

 $E_{\gamma,iso} = 5 \times 10^{52}$ эрг; $E_p = 350$ кэВ;

послесвечение гамма-всплеска,
 энергия ударной волны E_K = 2.5×10⁵³ эрг,

Параметры газопылевого облака:

- расстояние от источника всплеска до облака: R = 1, 10, 100 пк
- металличность $[M/H] = \log(Z/Z_{\odot}) = 0, -0.5, -1$
- плотность газа $n_{H,tot} = 10^2$, 10^3 , 10^4 см⁻³
- Распространенность химических элементов из Lodders et al. (2009):

Сечения ионизации

Основной вклад в поглощение излучения в рентгеновском диапазоне длин волн вносит фотоионизация внутренних электронных оболочек ионов металлов. Ионизация ионов металлов приводит к изменению коэффициента поглощения излучения.

В стандартной модели поглощения излучения в межзвездной среде Тюбинген–Боулдер (tbabs) газ считается нейтральным и невозмущенным, т.е. не учитывается ионизация газа излучением.

Результаты. Ионизационная структура газопылевого облака

- Результаты для всех расстояний показаны в один и тот же момент запаздывающего времени $t_r = 10^5$ с после начала гамма-всплеска, $t_r = t R/c$.
- Резкое падение концентраций ионов водорода и гелия на расстоянии около 4.4 пк формирует границу ионизованный–нейтральный газ.
 Однако, для атомов металлов такой резкой границы нет – распространенность ионов металлов с большим зарядом плавно уменьшается с расстоянием.
- N_{HX} лучевая концентрация ядер водорода (в молекулярном, атомарном или ионизованном состоянии), которая отсчитывается от границы ионизованный/нейтральный газ.

Данные наблюдений

- Каталоги Цветковой и др. (2017, 2021)
 включают суммарно 317 гамма-всплесков с известным красным смещением.
- В первом каталоге гамма-всплески, зарегистрированные в триггерном режиме в эксперименте Конус-Винд. Во втором гамма-всплески, зарегистрированные одновременно телескопом Swift/BAT и гамма-спектрометром Конус в режиме ожидания.

- Были выбраны 46 гамма-всплесков, у которых изотропная энергия излучения активной фазы приблизительно соответствует значению, принятому в численном моделировании, E_{y,iso} = 5×10⁵² эрг.
- Для выбранных гамма-всплесков проведен анализ энергетических спектров послесвечений, которые были получены на рентгеновском телескопе Swift/XRT в поздние моменты времени, t ≥ 4 ×10³ с, в режиме счета фотонов PC.

Аппроксимация энергетических спектров послесвечений гамма-всплесков

Модели в ХЅрес:

- Распространенности химических элементов в обеих моделях выбраны одинаковыми – значения в фотосфере Солнца из Лоддерс и др. (2009), их таблица 4;
- В аппроксимации учитывалось, что сигнал от источника и фон подчиняются распределению Пуассона (statistic cstat);
- Ошибки параметров определялись с помощью команды error. Параметр delta fit statistic был выбран равным 2.706, что соответствует уровню доверия 90% (σ = 1.65);
- Для 19 гамма-всплесков из 46 аппроксимация дает либо верхние пределы на N_{HX}, либо ошибка равна наиболее вероятному значению (результаты для этих всплесков не приводятся далее).

Спектр послесвечения 090926 В

Спектр получен на телескопе Swift/XRT, является усредненным спектром за период времени 5288 – 40016 сек:

без учета поглощения в родительской галактике на красном смещении z = 1.24, но с учетом $N_{H,Gal} = 2 \times 10^{20}$ см⁻²:

с учетом поглощения в родительской галактике, $N_{HX} = 5.5^{+2.3}_{-2.1} \times 10^{22} \text{ см}^{-2}$ (численная модель, $n_{Htot} = 10^4 \text{ см}^{-3}$)

Результаты аппроксимации спектров послесвечений гамма-всплесков

Лучевая концентрация газа, вычисленная в результате аппроксимации спектров, по оси абсцисс – результаты модели **tbabs**, по оси ординат – наша численная модель.

Параметры: $n_{H,tot} = 10^4$ см⁻³, R = 1 пк, [M/H] = 0,

Среднее отношение лучевых концентраций $N_{HX}/N_{HX,tbabs}$, полученных с помощью двух моделей, составляет около 3 для $N_{HX,tbabs} \leq 2 \times 10^{22}$ см⁻².

область ионизации ионов, $N_{HX} \approx 10^{20} \ \text{см}^{-2},$ или $0.5 \ \text{пк}$

Результаты расчетов для низкой металличности, [M/H] = -0.5 и -1

Для металличности [M/H] = -1 обе модели – **tbabs** и наши расчеты – дают одинаковые результаты. В этом случае ионы металлов не вносят вклад в поглощение излучения. И учет ионизационной структуры облака не оказывает эффекта на вычисления значений лучевой концентрации водорода.

С увеличением расстояния, уменьшается слой газа за фронтом ионизации, в котором ионы металлов находятся в ультра-ионизованном состоянии. При R = 10 пк, отличие между значениями N_{HX} и $N_{HX,tbabs}$ сравнимо с ошибками измерений этого параметра.

Наблюдаемое изменение N_{HX} для некоторых гамма-всплесков

Излучение гамма-всплеска ионизует газ, расположенный вблизи источника всплеска. В результате, излучение послесвечения, испущенное в поздние моменты времени, встретит на своем пути меньше поглощающего газа, чем излучение в более ранние моменты (Lazzati, R. Perna, 2002). Этот эффект теоретически можно наблюдать как уменьшение со временем наблюдаемого значения N_{HX}.

В работе Валана и др. (2023) проведено исследование изменения N_{HX} для 199 гамма-всплесков. Только 7 всплесков имеют признаки уменьшения лучевой концентрации N_{HX}. Один гамма-всплеск из этого списка попадает в нашу выборку – GRB 090926B.

численная модель ($n_{Htot} = 10^4 \text{ см}^{-3}$): N_{HX} = 5. 5^{+2.3}_{-2.1} × 10²² см⁻²

tbabs:

 $N_{HX, tbabs} = 2.4^{+1.9}_{-1.3} \times 10^{22} \text{ cm}^{-2}$

(режим PC, период времени 5288 – 40016 сек)

Заключение

- В работе рассмотрена выборка из 46 длинных гамма-всплесков с известным красным смещением, у которых полная изотропная энергия гамма-излучения $3.3 \times 10^{52} \le E_{\gamma,iso} \le 7.5 \times 10^{52}$ эрг. Для этих гамма-всплесков проведен анализ энергетических спектров послесвечения, полученных на телескопе Swift/XRT в поздние моменты времени, t $\ge 4 \times 10^3$ c.
- Аппроксимация энергетических спектров с помощью модели tbabs приводит к значениям лучевой концентрации, которые меньше действительных значений приблизительно в 3 раза – в случае, если поглощающий газ находится вблизи источника гамма-всплеска.
- Если молекулярное облако располагается на расстоянии R ≥ 10 пк от источника гамма-всплеска или металличность газа [M/H] ≤ -1, модель поглощения, основанная на результатах численного моделирования, и модель **tbabs** предсказывают одинаковые значения лучевой концентрации водорода.

Спасибо за внимание

Численная модель:
$$N_{HX} = 5.5^{+2.3}_{-2.1} \times 10^{22} \text{ см}^{-2}, \Gamma = 1.9^{+0.5}_{-0.5}$$
 (1.65)

GRB 090926B

tbabs: $N_{HX, \text{ tbabs}} = 2.4^{+1.9}_{-1.3} \times 10^{22} \text{ cm}^{-2}, \Gamma = 2.0^{+0.5}_{-0.5}$

Модель tbabs (Wilms et al. 2000)

Модель tbabs описывает поглощение рентгеновского излучения в нейтральном межзвездном газе:

- Степень молекуляризации газа f_{H2} составляет 20%;
- В модели TBabs учитываются химические элементы Na, Al, P, Cl, Ar, Ca, Ti, Cr, Mn, Co, Ni дополнительно к тем, что рассматриваются в нашей модели. Но вклад их мал.
- ТВаbs не учитывает процесс комптоновской ионизации H, H₂, He, который вносит основной вклад в оптическую толщину для энергий фотонов ≥ 10 кэВ. Но оптическая толщина на таких энергиях мала.
- Газ невозмущенный, т.е. не учитывается ионизация газа излучением.