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Abstract

We have carried out polarization measurements on a two-photon quantum state generated by spontaneous para-
metric down conversion. Our measurements show that the state is unpolarized in the classical theory, but they also
show that the state is not invariant under geometric rotation. Therefore, it is not unpolarized in the quantum theory.
This is another example of a rather simple experiment that clearly shows the effects of quantum interference. It also
confirms the theoretical investigation by Klyshko [Phys. Lett. A 163 (1992) 349]. The experiment is explained theo-
retically and a systematic treatment of polarization in quantum theory is outlined. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In the electromagnetic field theory, the linearly polarized modes of a monochromatic plane wave are
easily understood, since the field can be decomposed into two waves with perpendicular oscillations. In
classical optics, the polarization of such a plane wave is then unambiguously defined by the two compo-
nents, and it is straightforward to construct elliptically and circularly polarized modes. The Stokes pa-
rameters, introduced in 1852 [1], offer a handy treatment of polarization properties in the classical theory
[2]. The theory is easily extended to include stochastic (or quasi-monochromatic) waves [3,4], and one then
naturally introduces the degree of polarization.

On the other hand, quantized fields may be entangled. This makes the notion of polarization much more
complex in quantum theory. Earlier work on the quantum theory of polarization has focused on the Stokes
operators [5]. It is, however, known that the Stokes operators cannot, in general, fully characterize a
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quantum state [6-9]. The experiment reported here is an example of the failure of the Stokes-parameter
point of view in quantum optics. Other examples where quantum interference gives very different results
from classical interference are, of course, well known and have been shown experimentally (see Ref. [10] for
a review). However, we think that the present example is particularly transparent, partly because it deals
with the generally known concept of polarization. One aim of this paper is therefore to point out the effects
of quantum interference to a broader audience, not only those already familiar with this kind of phe-
nomena.

Furthermore, we demonstrate that the formalism used for the relative phase of two quantized modes
[11-13] can be employed when considering quantum polarization properties. This offers a new way of
tackling these problems, differing from the treatments by, for example, Klyshko [7] and Karassiov et al.
[14].

The paper is organized as follows. In Section 2, a short introduction to the Stokes parameters and the
Poincaré sphere is given. The corresponding Stokes operators used in quantum optics are introduced in
Section 3. The classical theory of our experiment is described in Section 4, before the experimental details
and results are reported in Section 5. It is found that our experiment cannot be explained by the classical
theory, and consequently the fully quantum mechanical description of our experiment is given in Section 6.
Our new formalism for quantum polarization is presented in Section 7. Finally, we summarize our paper in
Section 8.

2. Stokes parameters and the Poincaré sphere

Let us denote the horizontal and vertical component of a classical electric field in a plane wave by E; and
E,, respectively. Recall that a geometric rotation of the field by 6 about the propagation axis, as defined in
Fig. 1, transforms its components according to

E\ [ cosO sin0)[E (1)
E,) \—sin@ cosf )\ E, )’
Similarly, if the vertical component is delayed by a phase shift ¢, i.e., if the field propagates through a
birefringent phase plate with its slow axis oriented in the vertical direction, we have
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Fig. 1. Definition of the angle of geometric rotation 0. The arrows show the orientation of the modes, which are denoted by their
components of the electric field. The arrows also define the respective positive field directions.
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Assume now that we have a monochromatic transverse field that is completely described by

E\ = ae", E,=ax"”, Q=@ — ¢, 3)

where ay, a2, @, ¢,, and hence ¢ are real. In classical optics, a usual way to treat polarization is by means of
the Stokes parameters [3]. One of the four Stokes parameters is proportional to the intensity, and takes the
form

2 2
So =B + |Bo|” = af + . (4)
It is customary to normalize the other three Stokes parameters to this one according to

S, 2Re{EE)} 2 o
5, = X = 2{ 1 2}2 = a1§lz Cojq) = sin @ sin P, (5)
So |Ei|" + |E,| a +a

S,  2ImiEiE 2 i
_S_2m{EE) 2aamsing o (6)
So  |E\|"+ |E| ay +a;
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S. |E[-|E &-4& .
sZ:le 1|2 \2|2:a; agzsm@cosdx (7)
So BT+ BT a1t a

Here © and & are the angles of the spherical coordinates for the point described by the Cartesian coor-
dinates (sy, sy, s;). One finds that the possible values of a;, a,, and ¢ ensure that the considered states are
mapped on a sphere of unit radius, which in this context is called the Poincaré sphere. This mapping is one-
to-one, i.c., for every polarization state there is a unique point on the sphere, and for every point there is a
unique polarization state.

Fig. 2 shows the Poincaré sphere and the location of some different states of polarization. Note that, in
order to use both the common nomenclature of quantum mechanics and the usual orientation of presen-
tation of the Poincaré sphere, the orientation of the axes differs from the usual Cartesian system.

From Eq. (2) we see that phase-shifting component E, of the state (3) by ¢ relative to the component £,
makes a| = a,, d, = a,, and ¢’ = ¢ — ¢. Thus, the Stokes parameters are transformed according to

s cos¢p sing O Sy
s, | = —sing cos¢ 0 s |, (8)
s 0 0 1 Sz

which describes a positive rotation around the s.-axis by ¢.
Similarly, if we apply a geometric rotation 0 on the state (3), Eq. (1) tells us that

st cos20 0 sin20 Sy
s, | = 0 1 0 s |- 9)
s, —sin20 0 cos20 s

Again, the transformation can be seen as a positive rotation, in this case by 20 around the s,-axis.
Suppose now that we measure the intensity of the horizontally polarized component. Since the intensity

is proportional to the square of the electric field, we introduce

L=|E|=a, L=|Ef

Lo=5+5L=ad+a.

_ 2
= a;,

(10)
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Fig. 2. All linearly polarized fields are found on the equator of the Poincaré sphere. The right- and left-hand circularly polarized fields
are found on the north and south pole, respectively. Note that the orientation of the axes differs from the usual Cartesian system.

We note that

2a — | .+ 1
Sz:—a1 == I =aj = S—;

1 11
Itot o ( )
Thus, the normalized intensity of the horizontal mode can be read out from the Stokes parameter s..

3. Stokes operators

In quantum theory, the horizontal and vertical mode are characterized by their annihilation operators a
and b, respectively. By making use of the Heisenberg picture, the quantum states of the modes can be
expressed in the annihilation operators. The transformations of these operators under geometric rotations
and relative phase shifts are given by Eqgs. (1) and (2), where E; and E, are replaced by a and b, respectively.

In quantum optics, a set of operators are introduced [5,15-17] in correspondence to the Stokes pa-
rameters. The Stokes operators, which are of the same form as the angular momentum operators [18], are
defined as

So = a'a+b'b, (12)
S, =a'b+ab' (13)
S, =i(abt — a'b), (14)
S. =ala—b'b. (15)

Again, we find that the operators are transformed by a geometric rotation or a relative phase shift in exactly
the same manner as their classical counterparts. We simply replace s, s,, and s, with Sx, Sy, and Sz, re-
spectively, in Egs. (8) and (9), to obtain the quantum transformations [19].
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From the commutation relation
5.5, = is. (16)

and its cyclic permutations, it is clear that in the quantum world all the quantities corresponding to the
Stokes operators cannot be well defined simultaneously, due to the Heisenberg uncertainty relation. As the
variance of one Stokes operator can be made smaller if another is allowed to increase, the concept of
“polarization squeezing” has been discussed [7,8,20-22].

4. Classical theory of our experiment

Let us now assume that we measure the intensity of the horizontal component of a state while varying a
geometric rotation. Assume further that the detected intensity is found to be constant for all geometric
rotations. Recall that the measured intensity corresponds to the projection onto the s.-axis, and that the
geometric rotations are equivalent to rotations around the s,-axis. It is then easily seen that the only points
on the Poincaré sphere that have a constant projection onto the s.-axis for all geometric rotations are the
north and south pole (s, = £1). Hence, the field must be circularly polarized.

Applying a relative phase shift of /2 to the circularly polarized state would map it onto the equator of
the Poincaré sphere. Subsequent geometric rotation would then move the state along the equator. Con-
sequently, the projection onto the s.-axis would then take all the values between —1 and +1. In other words,
the detector would show full visibility as the rotation angle 6 is varied. If we allow for stochastic (or quasi-
monochromatic) fields, the average values of the different Stokes parameters characterize the state of the
field. The corresponding points will then lie inside the Poincaré sphere. Since the states can be described by
a probability distribution on the sphere, their averages obey the same transformation rules as the mono-
chromatic fields, i.e., the transformations can be seen as rotations. This means that all the states represented
by points on the s,-axis will result in a constant intensity in the first measurement considered above. These
states can be seen as circularly polarized fields of different degrees. Using the usual definition of the degree
of polarization [3]

n=/si+s;+s (17)

and Eq. (11), it is seen that the visibility 7 in the second intensity measurement equals the degree of po-
larization
vV — Imax - Imin _
[max + Imin

(18)

5. Experimental realization and measurement results

In this section, we report on our experiment and relate our results to the classical theory. A fully
quantum mechanical treatment of the experiment is presented in the following section.

The experiment described in the previous section was carried out on photon pairs generated by type-II
spontaneous parametric down conversion. The theory of this process is well known [23-26] and it has
allowed a wide range of experiments in fundamental quantum physics [10,27-29]. In our experiment, we
used 1-ps pulses of wavelength 780 nm from a Ti:sapphire laser, which was pumped by an Ar-ion laser. The
pulse repetition rate was 80 MHz and the pulses were frequency doubled before they entered a beta barium
borate crystal of length 0.5 mm. Collinearly propagating 780-nm photon pairs, consisting of one
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Fig. 3. The setup for the first measurement, corresponding to geometric rotation of the input state. Instead of spatial rotation of the
source or the detector, a HWP was used. In the second measurement, the HWP was replaced by a quarter-wave plate. The intensity
measurement of a horizontal linearly polarized component (H) was realized by using a polarization beam splitter (PBS) to spatially
separate it from the vertical one (V).

horizontally polarized and one vertically polarized photon, were created in the crystal. The generated
down-converted light was subsequently filtered spatially, by irises, and temporally, by preceding each of the
detectors with a 10-nm passband optical filter. The linearly polarized modes could then easily be coupled by
rotating phase plates that were placed in the beam. The photon-counting measurement was achieved using
EG&G single-photon counters with a quantum efficiency of 65% for the wavelength used. However, in
order to simplify the alignment, the light was guided to the detectors by fibers, which together with other
losses made the overall detection efficiency about 5%.

In two related experiments [30,31] employing spontaneous parametric down conversion, transformations
among three mutually orthogonal two-photon states were realized by simply rotating phase plates.

The setup for our first measurement is schematically shown in Fig. 3. Instead of physically rotating the
detection part relative to the source, we rotated a half-wave plate (HWP). This can be seen as a phase shift
of 7 in the rotated basis defined by the HWP. The total effect on the state in the original basis is therefore
equivalent to a geometric rotation to the basis of the HWP followed by the phase shift and a second ro-
tation back to the original basis. The resulting transformation matrix can be written

cos’ —sind\ /1 0 cos? sinY\ [cos2y  sin2¢

sind  cos? 0 e —sind cos?¥ /) \ sin2¢ —cos2V

(1 0 cos2y  sin2¢ (19)
“\0 e /\ —sin29 cos29 )

Thus, rotation of a HWP by 9 is equivalent to a geometric rotation of 24 followed by a relative phase shift
of m. In the Poincaré-sphere representation, this corresponds to rotating the sphere by 4¢ around the s,-axis
and then turning it upside down.

As seen in Fig. 4, we obtained a constant intensity when the rotation angle ¢ was varied. The same
reasoning and conclusion as above then applies: The only possible states that can give rise to these results
are the ones on the s,-axis (since turning the Poincaré sphere upside down maps the s.-axis onto itself).

As described previously, these states would produce interference fringes with visibility of its degree of
polarization when geometrically rotated after being phase shifted by n/2. In the second measurement, we
therefore replaced the HWP with a quarter-wave plate. As in the case of the HWP, rotation of the quarter-
wave plate could be seen as a geometric rotation followed by a relative phase shift and a geometric rotation
back to the original basis. Now, since the considered states are located on the s,-axis, the first rotation
leaves the states unchanged. The relative phase shift of n/2 induced by the quarter-wave plate and the
subsequent geometric rotation would then map the states onto the equatorial plane, rotating them around
the s,-axis with twice the rotation angle of the quarter-wave plate.
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Fig. 4. The results of the first two measurements described in Fig. 3. Single counts per 10 s as a function of the rotation angle 9 of the
HWP (0) and the quarter-wave plate (A). For comparison, the dark counts (M) measured when the laser was switched off are plotted.

The measured intensity as a function of the rotation angle of the quarter-wave plate is also plotted in
Fig. 4. Again, the intensity is found to be constant, which implies no degree of polarization. That is, ac-
cording to the classical theory, the light is unpolarized and the point characterizing the average values of the
Stokes parameters lies in the center of the Poincaré sphere.

However, we also performed a third measurement, which is described in Fig. 5. The setup is the same as
that used in our first measurement, but this time we measured the coincidences of detecting one photon in
each of the two linear polarizations when rotating the HWP. This is a fourth-order correlation measure-
ment, whereas the previous were second-order correlation measurements. As shown in Fig. 6, this allowed
us to obtain interference fringes with a visibility attaining 76%. Let us now recall the accepted quantum
optical definition of an unpolarized two-mode state [32-39]. Such a state must be invariant to any com-
bination of geometric rotations and relative phase shifts. Our state is clearly not invariant to the combi-
nation of geometric rotations and relative phase shifts imparted by the HWP. Therefore, it is not
unpolarized in the quantum theory. Thus, the considered state (|1, 1)) has quantum polarization properties

that cannot be explained classically.
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Fig. 5. The setup for the coincidence measurement.
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Fig. 6. The result of the measurement described in Fig. 5. The measured number of coincidence counts per 10 s (@) as a function of the
rotation angle ¥ of the HWP. The curve fit shows a visibility of 76%.

6. Quantum theory of our experiment

We have seen that the classical theory cannot explain the outcomes of our measurements. In this section,
we therefore give the quantum theory for the different measurements. We have chosen to keep the pre-
sentation rather detailed for pedagogical reasons. This should also make it easy to use the presented theory
in related experiments. As we think it is, to this end, more transparent to transform the states than the
operators, we here make use of the Schrodinger picture. We derive the transformations of the states in the
second excitation manifold, i.e., for states with exactly two photons. Any such a (pure) normalized state can
be written

W) = ¢0[0,2) + ¢1]1,1) + ¢2]2,0), (20)

where ¢, ¢1, ¢ € C, |co* + |ei* + |ea> = 1, and |m, n) denotes the state with m (1) photons in the hori-
zontally (vertically) polarized mode. The relative phase shift in Eq. (2) corresponds to the quantum
transformation Ups(¢)) = exp(—ib'b¢). The state (20) is then transformed according to Ups(¢) |¥), which
can be expressed in matrix form as

< e iz 0 0 Co ) o
C’l = 0 e_l‘r/’ 0 Cy = Ug)s)(¢) C1 . (21)
c 0 0 1 c &)

Similarly, the transformations corresponding to geometric rotations are found to be IAJGR(H) =
exp(—iS,0), and the transformation matrix in the second manifold is

cos? 0 —(1/+/2) sin 20 sin” 0
Ui (0) = | (1/v/2)sin20 cos 20 —(1/v/2)sin20 |. (22)
sin” 0 (1/+/2) sin 20 cos? 0

This transformation also describes a lossless beam splitter, which couples two spatially modes.
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A beam passing through a phase retarder rotated by o (as defined in Figs. 3 and 5), results in the
transformation Uggr (—0) Ups(¢) Ugr (¢), where ¢ is the delay of the horizontal mode as ¢ = 0. As described
previously, this is realized by noting that the effect can be seen as a relative phase shift ¢ in the basis defined
by the retarder.

It follows that the effects of the rotated HWP and quarter-wave plate in the second manifold are given by

cos? 21 —(1//2)sin 49 sin” 219
Ug%vp(ﬁ) = Ugl)z(*ﬁ) : U?S)(n) : Ugl)z(ﬂ) = | —(1/V/2)sin 4y — cos 49 (1/+/2) sin 49
sin” 21 (1/+/2) sin 49 cos? 20
(23)
and
Ugwe(9) = Ugr (=) - Upg (/2) - U (9)
(sin® ¥ — icos? )’ (1/v/2)(1 —icos 29) sin 21 (i/2) sin® 299
= | (1/v2)(1 —icos24)sin 29 —icos? 24 (1/v/2)(1 +icos2¥)sin29 |,
(i/2) sin® 20 (1/v/2)(1 + icos 209) sin 20 (cos2 9 — isin® ¥)*
(24)

respectively. Hence, the states that impinged on the detectors in our measurements are given by U(é\)w-
(1)(0,1,0)" and Ug\)w(ﬁ)((), 1,0)". Thus, when the HWP was used, the state was

sin 449 sin 49
————10,2) —cos49|1,1) + ———12,0).
U510.2) - cosdn|1, 1) + 25 12,0)

It follows that the average photon number in the horizontal mode was (¥ywp(9)|a'd| Pawe(9)) = 1, for

any rotation angle ). Similarly, in the case of the quarter-wave plate we had the state
(1 —icos29)sin 29 .5 (1 4+ icos2¥)sin2¢
| qwp (9)) 7 |0,2) —icos”29|1,1) + 7

which means that the average photon number impinging on the detector was (¥qwe(9)|d'd|¥owe(9)) = 1.
Unfortunately, our detectors are far from 100% efficient and do not register all the impinging photons. It is
readily shown that as long as the detectors are linear, albeit not 100% efficient, the detected count rate is still
independent of . However, the detectors being avalanche photodiodes, they are not linear, and in general
absorption of either one or two photons generates only one avalanche burst. Taking this effect into account,
one finds in fact that the count rate should not be independent of . For low quantum efficiencies this effect
is small, however, and at the present detection quantum efficiency of 5%, the visibility of the expected
ensuing curve would be only 1%. This is well below the count rate noise, which essentially follow a Pois-
sonian distribution. This explains the apparently invariant number of counts under geometric rotation in
the first two measurements.

In the third measurement, we detected one photon in each polarization simultaneously. In theory, the
probability for this outcome is

| Prwe () = (25)

12,0), (26)

0, 1P (@) =0

(27)

Of course, we did not get coincidence counts with probability one for any angle, since the detectors’
quantum efficiency was far from perfect. However, our measurements were proportional to the theoretical
prediction, apart from a bias due to dark counts, as expected.
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It is now also seen theoretically that the state |1, 1) has quantum polarization properties. From the
classical theory, |1, 1) was previously seen to be unpolarized. This could perhaps be expected since the fields
of the two perpendicular polarization modes are equally excited and phase invariant.

We note that the classical requirements for an unpolarized state can be expressed as conditions on
second-order correlation functions only. This is in contrast to quantum theory, which, as noted by Agarwal
[32], sets conditions on higher-order correlation functions too. Apart from the two-mode vacuum state, the
unpolarized quantum states are found to be mixed states [32—39]. It should be noted that we here deal with
strictly two-mode transverse fields, that is, we implicitly assume that the field can be described by a single
temporal mode, since the two (geometrical) transverse modes exhaust the considered set of modes.
Therefore, the temporal invariance of the Verdet—Stokes conditions discussed in the context of unpolarized
fields by Barakat [4] does not apply.

As seen in Eq. (27), the theory predicts that the coincidence measurement would give full visibility. This
fact was pointed out by Klyshko [7], who noted that the states |, n) are unpolarized in the classical (second-
order) sense but completely polarized in the fourth order.

A somewhat related experiment was reported in Ref. [40]. There two collinearly propagating, correlated
laser beams of perpendicular linear polarization and with same intensity were used. As they were rotated,
the noise of their intensity difference was measured. The noise was shown to vary sinusoidally as a function
of the rotation angle, and to attain values below the standard quantum limit for given angles. As explained
in Ref. [41], this could be seen as quantum polarization properties of a classically unpolarized light.
However, the wavelengths of the two beams were different, and therefore the experiment must be described
using four modes.

7. Quantum treatment of polarization

In the classical theory of polarization, all the linearly polarized states can be transformed into each other
by geometric rotations. Since the ratio between the horizontal and vertical component fully characterizes
any linearly polarized field, they can in theory be distinguished by one single measurement (on a single
“pulse” of light, for example). In reality, though, the measurements will be deteriorated due to shot noise.

In quantum optics too, the linearly polarized states can be mapped onto each other by geometric ro-
tations. Similarly, the ratio between the expectation values of the horizontal and vertical components will
be unique for every such state. However, in general these states will not be orthogonal, and therefore they
cannot be distinguished by one single measurement due to the probabilistic nature of quantum mechanics.
In particular, let us consider a linearly polarized state with N photons in the horizontal mode. Any other
linearly polarized N-photon state can then be generated by geometrical rotating the original state |V, 0) by a
given angle. Their overlap is found to be

4@,9 2 o 2N
(N,0]e™"|N,0)| = (cosB)™, (28)

which shows that they are orthogonal if and only if 6 = £7/2. Note that all the pure linearly polarized
states can be written

) ~
E aNef'Sf"e
N=0

where we have assumed the states to be normalized, and considered the vacuum state (|ao|° = 1) to be
unpolarized. Any state of the form (29) will pass through a perfect polarizer oriented at the angle 6 without
loss. These states are in general entangled. However if, e.g., the horizontal mode of the unrotated field is in

N,0), ay€C, |a| <1, (29)
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the coherent state |«), we have ay = o exp(—|«|*/2)/V/N!, and the horizontal and the vertical mode of the
rotated state will be in a product state of two coherent states.

We see from Eq. (28) that the states |N,0) cannot form a complete set in excitation manifolds N > 1 by
applying geometric rotations. This means that using these states, we cannot perfectly distinguish different
rotation angles if N > 1. In such a case, we would like to construct a measurement corresponding to a
complementary observable to the generator of the rotation, i.e., a Hermitian operator whose eigenstates are
superpositions of all the eigenstates of the generator equally weighted.

The eigenstates of the considered generator S, are invariant under geometric rotation. Among these, we
find the classical circularly polarized and unpolarized light. We denote the N + 1 orthogonal N-photon
eigenstates as |o,(€N)>, k=0,1,...,N. Using the notation |m, n), for the state with m (1) photons in the left-

hand (right-hand) circularly polarized mode, we can write |o,(CN>> = |N — k,k),. That is, the eigenstates of §y
are the circularly polarized two-mode number states. Constructing an equipartition state of these as de-
scribed above

|C< Ok 7 ¢1(5N> € Ra (30)

W Zew |
we find

sin’([N + 1]0)
(N +1)*sin® 0’
Thus, employing the states (30), the rotation angles Q,EN) =nk/(N+1), k=0,1,...,N, can be distin-

guished perfectly, since they are mutually orthogonal. Hence, the Hermitian rotation-angle operator can be
written

(e 50| = o

00 N
0 =3 > 01", (32)
N=0 k=0
where
1y = iS00y, (33)

We stress that the eigenstates of the rotation-angle operator are not linearly polarized, which could be
expected from an analogy with classical optics. Note also that |C(<)O)> =10,0) was included in Eq. (32) to
make the set of projectors complete The corresponding outcome, of course, does not give any information
of the angle of rotation, since | |o(()0>> is an eigenstate of § and therefore invariant under geometric
rotations. Hence, the value of 0& has no significance and it can be chosen arbitrarily.

For given choices of equipartltlon states (30) in the different manifolds N, we can introduce the corre-
sponding probability distribution functions. For a state described by the density operator p, they take the
form

P/gN)(f)) _ < |61S6A —iS, 0|C > (34)
These functions are n-periodic and satisfy
00 N
Y o> RYoM) =1 (35)
N=0 ¥=0

For more properties of these functions, see the corresponding discussion in the context of relative phase
[12]. Recently, a two-photon rotation-angle eigenstate was realized and its probability distribution function
measured [31].
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8. Summary

We have performed a rather simple two-photon experiment, which allowed us to verify differences be-
tween the classical and the quantum theory of polarization. Only for states containing at most one photon
are the theories fully compatible. The reason is that in a proper quantum theory, higher than second-order
correlations in the field amplitudes are incorporated in the theory, whereas in the classical description of
two-mode fields such correlations follow from the Stokes parameters, since the relative properties of the
field modes are then fully characterized by three real numbers. Therefore, absence of second-order corre-
lations, e.g., will lead to absence of higher-order correlations for classical fields, whereas our experiment
shows that this is not necessarily the case for quantized fields.

In our experiment, we used pulses of photon pairs generated by spontaneous parametric down con-
version of type II. The experiment consisted of three measurements, whose (classical) effects were easily
described using a geometrical representation of the Stokes parameters. The first two measurements were
seen to imply that the considered state was unpolarized by the classical theory. Despite this, our third
measurement was found to depend on the rotation angle around the direction of propagation. The
quantum theory explaining our results was given and a way of treating polarization in quantum optics was
outlined.
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