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1310 nm lasers as a driving force of GaAs-based technology
Brief overview of different approaches from the point of view of MBE engineer

MBE growth of 980 nm high power lasers
Technology of lasers with “standard” active region as a solid foundation to go   
to new types of lasers

Quantum dot lasers
Advantages, problems, Ioffe background
and realization of 1310 nm QD laser with record characteristics 

InGaAsN  quantum well lasers
Diluted nitrides as a good exam for your MBE chamber
High power SM CW operation

Project I 1.3 µµµµm LDs and VCSELs based on InGaAsN/GaAs material systems
Project II Blue/Green LDs based on III-N compound semiconductors
Project III High power LDs for pumping EDFA system and for frequency doubled blue lasers

Outline



Price-Performance Issue
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VCSELs:
medium cost lasers with high performance

Surface emitting LEDs:
low cost diodes with low performance

Electroabsorption-modulated DFB lasers
High cost with ultra-high performance



Technology landscape for fiber-optic transceivers
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Challenges for long-wavelength VCSEL
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there are two choices 
                      realization of 1.3 m emission on GaAs-based materials
                      combination of InP-based active region and AlGaAs/GaAs DBR

µ

850 nm VCSELs based  on GaAs/AlGaAs QW
980 nm VCSELs based on InGaAs/GaAs QW

which are commercially 
available now 

∆ µEc Al GaAs-/GaAs/-0.98 m In GaAs ~ 330 meV0.3 0.2 ∆ µEc InP-1.3 m InGaAsP  160 meV



Possible approaches and methods
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main approaches:
1. Monolithically grown on GaAs     InGaAsN, InAs QDs, GaAsSb - active region, 
                                                        AlGaAs/GaAs DBR
2. Wafer bonding  
                                                        InGaAsP-active region 
                                                        InAlGaAs DBR + fused AlGaAs DBR
3. Optical pumping 
    fused 850 nm VCSEL    



Laser = active region + laser structure

current injection 
light confinement 
and propagation

gain 



Design and Growth of High Power Laser
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CW operation of broad area 980-nm laser

L=1000 mm W=100 mm
AR/HR
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Γ-factor shows Ith=60 A/cm2
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The output power is limited by COMD

Thermal rollover is low even for 1-mm-long diode 
indicating much higher power can be achieved upon facet coating optimization



High power CW single lateral mode operation
of 980 nm RW lasers  
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Far Field Pattern
45-TR324
CW T=20

o
C

 I= 100mA, P=71mW
 I= 200mA, P=172mW
 I= 300mA, P=270mW
 I= 350mA, P=320mW

Dependence of Output Power, Voltage and Total
 Conversion Efficiency on Drive Current 

SM kink-free power  >300 mW
wall-plug efficiency    >50%

Reliability issue is under active development now.



Background and achievement of Ioffe Institute and TUB

� First demonstration of SK QD laser,                   Ledentsov  et al, Semiconductors 28, 1484, 1994
� Laser with highest output power for SK QD                      Kovsh, El. Lett., 35, 1161, 1999
� Realization of 1.3 µm QD laser Zhukov et al, Appl.Phys.Lett. 75, 1926, 1999
� 1.3 µm high power SM RW QD laser          Ledentsov et al, IEEE J. of Sel.Top.inQ.E.,6,439, 2000
� First 1.3 µm GaAs based VCSEL,              Lott et al, El.Lett., 36, 1384, 2000
� High power lasers for 0.94 µm based on                   Zhukov et al, Electron. Lett., 35, 1845, 1999

submonolayer QDs

Russian State Prize was awarded for this work in 2001 to:
Zh.I.Alferov, L.V.Asryan, D.Bimberg, P.S.Kop’ev, N.N.Ledentsov, V.A.Shchukin, R.A.Suris, V.M.Ustinov

Technology of formation of self-organized QDs
Investigation of fundamental properties of semiconductor QDs
Theory of QD lasers
Realization of QD lasers

List of some major results in QD laser technology



Recent achievements in Ioffe Institute in QD technology

940 nm laser based on submonolayer QDs with the highest CW 
output power (> 6W) ever reported for any type of QD lasers

A.R.Kovsh A.E.Zhukov, N.A.Maleev, S.S.Mikhrin, D.A.Livshits, Y.M.Shernyakov, M.V.Maximov, 
N.A.Pihtin, I.S.Tarasov, V.M.Ustinov, N.N.Ledentsov, D.Bimberg, Zh.I.Alferov
Microelectronic Journal, 2003

1.3 µm QD lasers with record combination of characteristics 
such as Jth <150 A/cm2, ηD >80% and T0 >120K 
for any kind of near-1.3-micron lasers

A.R.Kovsh, N.A.Maleev, A.E.Zhukov, S.S.Mikhrin, A.P.Vasil’ev, Yu.M.Shernyakov, 
M.V.Maximov, D.A.Livshits, V.M.Ustinov, N.N.Ledentsov, D.Bimberg, Zh.I.Alferov,
Electr.Lett., 38(12),2002

Joint work and development are useful for ALL Projects
including those which are not directly involved in the Joint Program 



Laser = active region + laser structure

current injection 
light confinement 
and propagation

gain



Gain-current curve as one of the main characteristics 
of laser active region
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Problems of self-organized QDs 
which have to be solved to get high laser performance
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High density of states in matrix states “pins” Fermi level at higher position even in the case of high localization 

It leads to high contribution of upper states to the threshold current and increase internal loss. 
In this case the quality of matrix plays also crucial role



Structural and optical properties of InAs QDs in GaAs matrix
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Similar to the case of InGaAs QW there is a red limit of possible wavelength
Special procedure has to be developed to extend wavelength to 1.3 µm



Formation of QDs emitting at 1.3 µµµµm

InAs

InGaAs

GaAs

MBE growth
1. Formation of self-organized InAs QDs
2. Capping by InGa(Al)As layer

Possible mechanisms for 
red-shift of PL peak position :

InAs WL
InAs QD InGa(Al)As

GaAs

Reduced band-gap of surrounding material

1
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3

Increased QD sizes (InAs accumulation near QDs)

Abrupt  interfaces due to reduced diffusion 
               ( interdiffusion  ~    n )∆

Reduced strain in QDs due to relaxation of  lattice constant 
in growth direction  

Plan-view of TEM image 
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This technology is well established in different modifications in many research groups over the world



Multiple stacking is a key technology for realization of high 
performance QD lasers 

Maximum number of QD planes is limited due to strain relaxation (depends on wavelength)
in combination with -factor compressionΓ
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Laser based on 10 layers of QDs

High external differential efficiency in 
combination with low threshold current 

and required spectral range

 

For lasers based on 5 or 10 layers
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Successful realization of multiple stacking allowed demonstration 
of unbeatable laser performance in 1.3 µm range  



Effect of loss multiplication in QD lasers
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Single lateral mode operation of QD lasers

If the threshold is almost zero do you need high T0 ?



QD laser with improved beam divergence
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State-of-the-art of InGaAsN technology 
when the project was initiated
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1. The broad variety of laser characteristics indicates that technology 
    of low-N-containing GaAs-based materials is still immature

2. The InGaAsN-LDs are inferior to InGaAs-counteparts 

Let’s reveal the reasons responsible for degradation of PL and eliminate them



Nitrogen Plasma Source to grow InGaAsN materials

Careful optimization of plasma cell design and operation can significantly decrease effect of ion damage



Phase-diagram of the growth of GaAsN

“Phase separation” can be
suppressed by higher growth rate

or by lower growth temperature

The presence of Indium enhances the effect of phase separation shifting 
the boarder to the left 

Even without Nitrogen highly strained InGaAs QW wants to go to QDs 

LOW TEMPERATURE GROWTH 
is necessary to grow high structural quality N-containing material



Low temperature growth of bulk GaAsN material
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Philosophy of the InGaAsN growth

The Nature sets the solid curve 
whereas

The dot curve can be controlled by human beings



MBE equipment in ITRI/OES of semi-production level

Two systems Riber Epineat connected by vacuum line
1 x 4 inch or 3 x 2 inch wafers

Low temperature growth in “big” machine (vertical reactor) is much more challenging 
compared with reactors of laboratory scale



Improvement of uniformity of nitrogen incorporation by 
special design of separate chamber for N source

∆∆∆∆ λλλλ < 1 nm∆∆∆∆ λλλλ > 10 nm

Mapping of PL peak position of PL from GaAsN0.01

before after



Realization of 1.3 µµµµm InGaAsN laser

• Internal quantum efficiency:η i> 85%, 
• Threshold current density:Jth < 700 A/cm2

• slope efficiency = 0.67 W/A  
• Characteristic temperature:T0 =121 K
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Single lateral mode CW high power laser 
based on SQW InGaAsN

0 100 200 300 400 500 600 700 800
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T= 25oC

3-T R561B CL/ CL
(W ,L)=(3µ m,1mm)
(τ ,T)=(1µ s,10ms)

V
ol

ta
ge

, V
, V

Curr ent,  I,  m A

0

100

200

300

400

500

1.275 1.280 1.285 1.290 1.295 1.300 1.305 1.310 1.315

I =600mA

I=300mA

I=150mA

I=25mA

 

 

Wavelengt h, λ , nm

 
O

ut
pu

t P
ow

er
 p

er
 tw

o 
fa

ce
ts

, P
, m

W
0

4

8

12

16

20

24

28

32

 T
ot

al
 W

al
lp

lu
g 

Ef
fi

ci
en

sy
, %

before packaging TO46 

0 100 200 300 400 500 600 700 800
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
2,2
2,4
2,6
2,8
3,0

CW

PulseT=25oC

TR561 sample No.2
W=3µm, L=1000µm, AR/HR

V
ol

ta
ge

, V
 (V

) 

Current, I (mA)

0

50

100

150

200

250

300

350

400

O
ut

pu
t P

ow
er

 p
er

 fa
ce

t, 
P 

(m
W

)

The highest ever reported SM CW power for 1.3 µm GaAs-based laser 180 mW
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Top results in 1.3 µµµµm RW lasers based on InGaAsN
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toward 1.55 µµµµm devices on GaAs

In GaAsN   T =410 C0.36 0.02 sub
0

In GaAsN   T =410 C0.36 0.035 sub
0

In GaAsN   T =370 C0.36 0.05 sub
0

Room temperature PL spectra of InGaAsN QW
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There is strong evidence of perspective for GaAs based lasers to cover 
the whole wavelength range of telecommunication

too High threshold             6.7 kA/cm2

but High efficiency !!!                0.5 W/A

very first result



Alternative way to go
InAs/InGaAsN QDs for 1.55 µµµµm application

A.Yu.Egorov, V.A.Odnoblyudov et al MBEXII conf, USA, Sept 2002

Let’s combine advantages (and avoid disadvantages) of both approaches

1.3 µm 
InGaAsN QW or InAs/InGaAs QDs

1.55 µm 
InAs/InGaAsN QDs



Vertical Laser = active region + laser structure

current injection 
light confinement 
and propagation

DBR, cavity

gain 



980 nm intra-cavity contacted QW VCSEL
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Technology intracavity-contacted VCSEL with the state-of-the-art performance 
has been developed using active region based on 980 nm InGaAs QW

Scheme



1.3 µµµµm gain media for VCSEL

Dependence of modal gain on current density

extracted from dependences of 
Jth and ηD on cavity length

all lasers are about the same -factor design
(0.016 for 65A QW)

Γ

34%
~0.35 mµ

1.3 m SQW InGaAsN 420 Cµ 0

1.04 m SQW InGaAs QW 500 Cµ 0

1.3 m QDs (10 layers)µ

Both InGaAsN QW and InAs QDs can be used as an active region of VCSEL



Device results which characterize the level of technology 
developed within ITRI-Ioffe Joint Program

• 980 nm high power lasers (broad area and SM) with the state-of-the-art level of performance 
(total conversion efficiency of 60% in low-Γ-factor design)

• 1.3 µm QD lasers with a record vertical beam divergence
• 1.3 µm SM QD lasers with the lowest threshold for any kind of unburied lasers (1.4 mA)
• First realization of InGaAsN lasers with high performance by MBE setup of production level 
• 1.3 µm SM high power InGaAsN lasers with the record characteristics 

(highest power ever reported for long-wavelength GaAs-based lasers 180 mW)
• 980 nm intracavity contacted VCSEL with state-of-the-art level of performance 

Currently under development:
• Reliability issue
• 1.3 µm VCSEL based on both InGaAsN QW and InAs/InGaAs QDs
• 1.55 µm lasers based on InGaAsN QW and InAs/InGaAsN QDs



our very big thank to our Taiwanese 
colleagues and friends

More than 20 visits (2 weeks – one year)
More than 10 persons
More than 60 month x person



Conclusion

Let’s keep making best lasers together


