Technologies and materials developing in ITRI-loffe Joint Scientific Program results of two-year joint work on MBE-grown devices

A.R.Kovsh

Industrial Technology Research Institute, Hsinchu 310, Taiwan, R.O.C.

A.F.Ioffe Physico-Technical Institute, St.Petersburg 194021, Russia

Institut fur Festkorperphysik Technische Universitat Berlin, Germany

This work was done together with

. . . .

J.S.Wang, Y.T.Wu, R.S.Hsiao, L.P.Chen, L.Wei, <u>G.Lin</u>, B.Lay, I.Chen, and J.Y.Chi

D.A.Livshits, N.A.Maleev, A.E.Zhukov, A.Yu.Egorov, N.V.Kryzhanovskaya V.M.Ustinov, and N.N.Ledentsov

Outline

Project I1.3 μm LDs and VCSELs based on InGaAsN/GaAs material systemsProject IIBlue/Green LDs based on III-N compound semiconductorsProject IIIHigh power LDs for pumping EDFA system and for frequency doubled blue lasers

1310 nm lasers as a driving force of GaAs-based technology

Brief overview of different approaches from the point of view of MBE engineer

MBE growth of 980 nm high power lasers

Technology of lasers with "standard" active region as a solid foundation to go to new types of lasers

Quantum dot lasers

Advantages, problems, loffe background and realization of 1310 nm QD laser with record characteristics

InGaAsN quantum well lasers

Diluted nitrides as a good exam for your MBE chamber High power SM CW operation

Price-Performance Issue

Surface emitting LEDs: low cost diodes with low performance

Technology landscape for fiber-optic transceivers

Challenges for long-wavelength VCSEL

Realization of 1.31 or 1.55 μm VCSELs is much more challenging than

850 nm VCSELs based on GaAs/AlGaAs QW 980 nm VCSELs based on InGaAs/GaAs QW

which are commercially available now

there are two choices

realization of 1.3 μm emission on GaAs-based materials combination of InP-based active region and AlGaAs/GaAs DBR

Possible approaches and methods

Laser = active region + laser structure

Design and Growth of High Power Laser

CW operation of broad area 980-nm laser

The output power is limited by COMD

Thermal rollover is low even for 1-mm-long diode indicating much higher power can be achieved upon facet coating optimization

High power CW single lateral mode operation of 980 nm RW lasers

Dependence of Output Power, Voltage and Total Conversion Efficiency on Drive Current

Reliability issue is under active development now.

Background and achievement of loffe Institute and TUB

Technology of formation of self-organized QDs Investigation of fundamental properties of semiconductor QDs Theory of QD lasers Realization of QD lasers

Russian State Prize was awarded for this work in 2001 to: Zh.I.Alferov, L.V.Asryan, D.Bimberg, P.S.Kop'ev, N.N.Ledentsov, V.A.Shchukin, R.A.Suris, V.M.Ustinov

List of some major results in QD laser technology

First demonstration of SK QD laser,
Laser with highest output power for SK QD
Realization of 1.3 μm QD laser
1.3 μm high power SM RW QD laser
First 1.3 μm GaAs based VCSEL,
High power lasers for 0.94 μm based on submonolayer QDs
Ledentsov et al, Semiconductors 28, 1484, 1994
Kovsh, El. Lett., 35, 1161, 1999
Zhukov et al, Appl.Phys.Lett. 75, 1926, 1999
Ledentsov et al, IEEE J. of Sel.Top.inQ.E.,6,439, 2000
Zhukov et al, El.Lett., 36, 1384, 2000

Recent achievements in loffe Institute in QD technology

940 nm laser based on submonolayer QDs with the highest CW output power (> 6W) ever reported for any type of QD lasers *A.R.Kovsh A.E.Zhukov, N.A.Maleev, S.S.Mikhrin, D.A.Livshits, Y.M.Shernyakov, M.V.Maximov, N.A.Pihtin, I.S.Tarasov, V.M.Ustinov, N.N.Ledentsov, D.Bimberg, Zh.I.Alferov Microelectronic Journal, 2003*

1.3 µm QD lasers with record combination of characteristics such as $J_{th} < 150 \text{ A/cm}^2$, $\eta_D > 80\%$ and $T_0 > 120\text{K}$ for any kind of near-1.3-micron lasers *A.R.Kovsh, N.A.Maleev, A.E.Zhukov, S.S.Mikhrin, A.P.Vasil'ev, Yu.M.Shernyakov, M.V.Maximov, D.A.Livshits, V.M.Ustinov, N.N.Ledentsov, D.Bimberg, Zh.I.Alferov, Electr.Lett., 38(12),2002*

Joint work and development are useful for ALL Projects including those which are not directly involved in the Joint Program

Laser = active region + laser structure

gain current injection light confinement and propagation

Gain-current curve as one of the main characteristics of laser active region

Higher output loss -> higher η_D

Reduced differential gain leads to degradation of laser performance especially for short cavity devices (high threshold, low differential efficiency, low T_0)

QD – fundamental problems related to *QD* formation InGaAsN – technical problems related to cleanness of materials

Problems of self-organized QDs which have to be solved to get high laser performance

$$\eta_D = \eta_i \frac{\alpha_{mir}}{\alpha_{mir} + \alpha_i}$$

Low gain limits the range of possible mirror loss

High density of states in matrix states "pins" Fermi level at higher position even in the case of high localization

It leads to high contribution of upper states to the threshold current and increase internal loss. In this case the quality of matrix plays also crucial role

Structural and optical properties of InAs QDs in GaAs matrix

Plan-view TEM

Room-temperature PL

Similar to the case of InGaAs QW there is a red limit of possible wavelength Special procedure has to be developed to extend wavelength to $1.3 \,\mu$ m

Formation of QDs emitting at 1.3 μ m

MBE growth

- 1. Formation of self-organized InAs QDs
- 2. Capping by InGa(AI) As layer

Possible mechanisms for red-shift of PL peak position :

Reduced band-gap of surrounding material

Reduced strain in QDs due to relaxation of lattice constant in growth direction

Increased QD sizes (InAs accumulation near QDs)

Plan-view of TEM image

100 nm

This technology is well established in different modifications in many research groups over the world

Multiple stacking is a key technology for realization of high performance QD lasers

Number of QD planes vs spacer thickness

Maximum number of QD planes is limited due to strain relaxation (depends on wavelength) in combination with Γ -factor compression

Laser based on 10 layers of QDs

Light-current curve (pulsed)

For lasers based on 5 or 10 layers

J_{th} <150 A/cm² (100 A/cm²) η_D>70% (88%) T₀>100 K (150K for 1.5 mm *L*) in 20C-50C range

High external differential efficiency in combination with low threshold current and required spectral range

Successful realization of multiple stacking allowed demonstration of unbeatable laser performance in 1.3 µm range

J_{th} and Efficiency vs cavity length Gain - current 30 1000 800 J_{as} A/cm^{*} $\boldsymbol{\alpha}_{i}$ Δ J_{ik} 25 600 g_{th} $(g_{th} - \alpha_{i})$ 100 Ω Gain / Loss, cm⁻¹ 20 200 Differential efficiency $\eta_{\rm b}, \%$ 60 15 1.6 ES_ experimental ES best fit: lasing $\eta = 93\%$, $\alpha = 1.2$ cm 10 70 $1/\eta_D$ 1.4 1.2 GS 0 25080 1.0 1000 2000 500 1000 1500 100 Cavity length L, µm Threshold current density, $J_{\rm th}$, A/cm² $g_{th} = \alpha_{in} + \alpha_{mir}$ $\alpha_i(J_{th}) = 1.5 \times \exp(J_{th}/650)$ $\eta_{\rm D} = \eta_{\rm i} \frac{\alpha_{\rm mir}}{\alpha_{\rm mir} + \alpha_{\rm i}} \qquad \alpha_{\rm mir} = \frac{1}{L} \ln\left(\frac{1}{R}\right)$ $g_{th}(J_{th}) = 10.7 \times \ln(J_{th}/60)$

Effect of loss multiplication in QD lasers

Increment in internal loss with threshold current limits the possible mirror loss

Single lateral mode operation of QD lasers

Output power vs drive current

If the threshold is almost zero do you need high T_0 ?

QD laser with improved beam divergence

5 layers of QDs

W=5 μ m, L=3 mm, as cleaved

λ =1.31 μ m beam divergency 45°

threshold	efficiency	I-V
$I_{th} = 26 \text{ mA}$ $J_{th} = 173 \text{ A/cm}^2$	$\begin{array}{c} 0.43 \text{ W/A} \\ \eta_{\rm Dif} = 45\% \end{array}$	$R_s = 1.0 \Omega$ $V_0 = 1.0 V$

First realization of 1.31 μ m QD laser with high performance in low- Γ -factor design

State-of-the-art of InGaAsN technology when the project was initiated

- 1. The broad variety of laser characteristics indicates that technology of low-N-containing GaAs-based materials is still immature
- 2. The InGaAsN-LDs are inferior to InGaAs-counteparts

Let's reveal the reasons responsible for degradation of PL and eliminate them

Nitrogen Plasma Source to grow InGaAsN materials

Careful optimization of plasma cell design and operation can significantly decrease effect of ion damage

Phase-diagram of the growth of GaAsN

"Phase separation" can be suppressed by higher growth rate or by lower growth temperature

The presence of Indium enhances the effect of phase separation shifting the boarder to the left

Even without Nitrogen highly strained InGaAs QW wants to go to QDs

LOW TEMPERATURE GROWTH

is necessary to grow high structural quality N-containing material

Low temperature growth of bulk GaAsN material

dependence of integrated PL intensity of GaAs(N) layers on PL wavelength grown at different temperatures (left axis)

at 600 °C and GaAs and GaAsN₀₀₁ grown at 520 °C.

on growth temperature for different structures with and without annealing

Low temperature growth is the main reason of poor optical quality of N contained structures

Philosophy of the InGaAsN growth

The Nature sets the solid curve whereas The dot curve can be controlled by human beings

MBE equipment in ITRI/OES of semi-production level

Two systems Riber Epineat connected by vacuum line $1 \ge 4$ inch or $3 \ge 2$ inch wafers

Low temperature growth in "big" machine (vertical reactor) is much more challenging compared with reactors of laboratory scale

Improvement of uniformity of nitrogen incorporation by special design of separate chamber for N source

 $\Delta \lambda > 10 \text{ nm}$

 $\Delta \lambda < 1 \text{ nm}$

Mapping of PL peak position of PL from GaAsN_{0.01}

Realization of 1.3 μm InGaAsN laser

L=1 mm, W=10 μ m

- Internal quantum efficiency: $\eta_i > 85\%$,
- Threshold current density: $J_{th} < 700 \text{ A/cm}^2$
- slope efficiency = 0.67 W/A
- Characteristic temperature: $T_0 = 121 \text{ K}$

SEM image after BOE

High internal quantum efficiency @ Low internal loss Threshold current density is to be improved further

Single lateral mode CW high power laser based on SQW InGaAsN

The highest ever reported SM CW power for 1.3 µm GaAs-based laser 180 mW

Top results in 1.3 μm RW lasers based on InGaAsN

Ridge waveguide lasers	Method Company	Threshold current I, mA	Threshold current density J _{th} , kA/cm ²	Slope efficiency W/A	T ₀ K
DQW 700x4 μm CL/CL	MBE Infineon AG	31	1.1	0.42	110
SQW 800x4 µm HR/CL	MBE TU Wurzburg	21	0.65	0.52	150 (special design)
SQW 1000x3 μm CL/CL	MBE ITRI/OES	21	0.7	0.67	85

toward 1.55 μ m devices on GaAs

Room temperature PL spectra of InGaAsN QW

There is strong evidence of perspective for GaAs based lasers to cover the whole wavelength range of telecommunication

Alternative way to go InAs/InGaAsN QDs for 1.55 μm application

Let's combine advantages (and avoid disadvantages) of both approaches

Vertical Laser = active region + laser structure

gain current injection light confinement and propagation DBR, cavity

980 nm intra-cavity contacted QW VCSEL

Top DBR *L-I* and *I-V* curves AlO/GrAs P-contact InGaAs QW's AlO apertures P-GaAs N-contact 3,0 lth = 1.5 mAN-GaAs $\eta_{dif} = 0.25 \text{ W/A}$ Hottom Н u.d. DBR 2,5 $Rs = 80 \Omega$ Undoped GaAs substrate AltiaAs/tiaAs Power (mW) Voltage (V) 2,0 3 EL intensity (a.u.) 1,5 2 SEM image 1,0 0,5 964 966 968 970 972 974 976 978 λ (nm) 0,0 0 25 10 20 Ó 15 30 5 Current (mA)

Scheme

Technology intracavity-contacted VCSEL with the state-of-the-art performance has been developed using active region based on 980 nm InGaAs QW

1.3 μm gain media for VCSEL

Dependence of modal gain on current density

extracted from dependences of J_{th} and η_D on cavity length

Both InGaAsN QW and InAs QDs can be used as an active region of VCSEL

Device results which characterize the level of technology developed within ITRI-loffe Joint Program

- 980 nm high power lasers (broad area and SM) with the state-of-the-art level of performance (total conversion efficiency of 60% in low-Γ-factor design)
- 1.3 $\mu m QD$ lasers with a record vertical beam divergence
- 1.3 μ m SM QD lasers with the lowest threshold for any kind of unburied lasers (1.4 mA)
- First realization of InGaAsN lasers with high performance by MBE setup of production level
- 1.3 μm SM high power InGaAsN lasers with the record characteristics (highest power ever reported for long-wavelength GaAs-based lasers 180 mW)
- 980 nm intracavity contacted VCSEL with state-of-the-art level of performance

Currently under development:

- Reliability issue
- + 1.3 μm VCSEL based on both InGaAsN QW and InAs/InGaAs QDs
- + 1.55 μm lasers based on InGaAsN QW and InAs/InGaAsN QDs

More than 20 visits (2 weeks – one year) More than 10 persons More than 60 month x person

Огромное спасибо от всех нас нашим тайваньским коллегам и друзьям

our very big thank to our Taiwanese colleagues and friends

Conclusion

Let's keep making best lasers together