### Soft X-ray Transients

#### Edward Brown Michigan State University

artwork courtesy T. Piro

### Discovery, Cen X-4



### transients



### transients



### H-atmosphere; Zavlin et al. '96

heavier species rapidly sink from photosphere; Bildsten et al. '92

gives radii consistent with NS star surface



# Quiescent emission consistent with emission from NS surface



Rutledge et al. '00



Fig. 2. Schematic representation of (A, Z). The curves of constant  $\varepsilon_{\beta} = Q_p - Q_n$  have been indicated by dashed lines. The thick black line indicates the boundary of existence of a nucleus for which  $Q_n = 0$ . The step line  $a_1 a_2 a_3 \dots a_k$  correspond to variations of (A, Z) with increasing density of the cold material. At the point  $a_k$ ,  $\varepsilon_{\beta}$  attains the maximum  $\varepsilon_{\beta \max}$ .

### crust reactions deep heating

#### illustration with a simple liquid-drop model (Mackie & Baym '77, following Haensel & Zdunik '90)



see poster by A. Deibel

### crust reactions | deep heating

Bisnovatyi-Kogan and Chechetkin '74; Sato '79; Haensel & Zdunk '90; Gupta et al. '07; Steiner '12; Schatz et al. '13; Deibel et al. (in prep)

### neutronization

$$E \approx -a_V(N+Z) + a_A \frac{(N-Z)^2}{N+Z}$$

In  $\beta$ -equilibrium,  $\mu_e = \mu_n - \mu_p$ , with

$$\mu_{n} = \left(\frac{\partial E}{\partial N}\right)_{Z}, \quad \mu_{p} = \left(\frac{\partial E}{\partial Z}\right)_{N}$$

 $\frac{Z}{A} \approx \frac{1}{2} - \frac{\mu_e}{8a_A}$ 

| envelope    | e                            |
|-------------|------------------------------|
| outer crust | {Z,A}                        |
| inner crust | n<br>e <sup>-</sup><br>{Z,A} |

### neutronization

$$E \approx -a_V(N+Z) + a_A \frac{(N-Z)^2}{N+Z}$$

In  $\beta$ -equilibrium,  $\mu_e = \mu_n - \mu_p$ , with

$$\mu_{n} = \left(\frac{\partial E}{\partial N}\right)_{Z}, \quad \mu_{p} = \left(\frac{\partial E}{\partial Z}\right)_{N}$$

 $\frac{Z}{A} \approx \frac{1}{2} - \frac{\mu_e}{8a_A}$ 



### neutronization

$$E \approx -a_V(N+Z) + a_A \frac{(N-Z)^2}{N+Z}$$

In  $\beta$ -equilibrium,  $\mu_e = \mu_n - \mu_p$ , with

$$\mu_{n} = \left(\frac{\partial E}{\partial N}\right)_{Z}, \quad \mu_{p} = \left(\frac{\partial E}{\partial Z}\right)_{N}$$

 $\frac{Z}{A} \approx \frac{1}{2} - \frac{\mu_e}{8a_A}$ 



### neutron drip

$$E \approx -a_V(N+Z) + a_A \frac{(N-Z)^2}{N+Z}$$

At neutron drip,

$$\mu_n = \left(\frac{\partial E}{\partial N}\right)_Z \to 0$$

 $\mu_e \approx 2a_V \approx 30$  MeV



### neutron drip

$$\mathbf{E} \approx -\mathbf{a}_{\mathbf{V}}(\mathbf{N} + \mathbf{Z}) + \mathbf{a}_{\mathbf{A}} \frac{(\mathbf{N} - \mathbf{Z})^2}{\mathbf{N} + \mathbf{Z}}$$

At neutron drip,

$$\mu_n = \left(\frac{\partial E}{\partial N}\right)_Z \to 0$$

 $\mu_e \approx 2a_V \approx 30$  MeV





#### plot courtesy A. Steiner



Heinke et al. 2007, following Yakovlev et al. 2004



Heinke et al. 2007, following Yakovlev et al. 2004

### determination of NS radius Guillot et al. 2013



### H vs He atmosphere NGC 6397, Heinke et al. '14



### quasi-persistent transients



Cackett et al. '06

# quasi-peristent transients

Rutledge et al., Shternin et al., Brown & Cumming; Page & Reddy

# quasi-peristent transients

Rutledge et al., Shternin et al., Brown & Cumming; Page & Reddy



# quasi-peristent transients

Rutledge et al., Shternin et al., Brown & Cumming; Page & Reddy

data from Cackett et al. 2008 fits from Brown & Cumming 2009



For a cooling crust,

$$\rho C_P \frac{\partial T}{\partial t} = \frac{\partial}{\partial r} \left( K \frac{\partial T}{\partial r} \right),$$

$$\tau \approx \frac{1}{4} \left[ \int \left( \frac{\rho C_P}{K} \right)^{1/2} \, \mathrm{d}r \right]^2.$$



For a cooling crust,

$$\rho C_P \frac{\partial T}{\partial t} = \frac{\partial}{\partial r} \left( K \frac{\partial T}{\partial r} \right),$$

$$\tau \approx \frac{1}{4} \left[ \int \left( \frac{\rho C_P}{K} \right)^{1/2} \, \mathrm{d}r \right]^2.$$



For a cooling crust,

$$\rho C_P \frac{\partial T}{\partial t} = \frac{\partial}{\partial r} \left( K \frac{\partial T}{\partial r} \right),$$

$$\tau \approx \frac{1}{4} \left[ \int \left( \frac{\rho C_P}{K} \right)^{1/2} \, \mathrm{d}r \right]^2.$$



For a cooling crust,

$$\rho C_P \frac{\partial T}{\partial t} = \frac{\partial}{\partial r} \left( K \frac{\partial T}{\partial r} \right),$$

$$\tau \approx \frac{1}{4} \left[ \int \left( \frac{\rho C_P}{K} \right)^{1/2} \, \mathrm{d}r \right]^2.$$



#### How impure is the crust? Q < 10Shternin et al. 2007; Brown & Cumming 2009; see talk by D. Page



#### How impure is the crust? Q < 10Shternin et al. 2007; Brown & Cumming 2009; see talk by D. Page





Superburst in 4U 1608–522 Keek et al. '07

### LETTER

### Strong neutrino cooling by cycles of electron capture and $\beta^-$ decay in neutron star crusts

H. Schatz<sup>1,2,3</sup>, S. Gupta<sup>4</sup>, P. Möller<sup>2,5</sup>, M. Beard<sup>2,6</sup>, E. F. Brown<sup>1,2,3</sup>, A. T. Deibel<sup>2,3</sup>, L. R. Gasques<sup>7</sup>, W. R. Hix<sup>8,9</sup>, L. Keek<sup>1,2,3</sup>, R. Lau<sup>1,2,3</sup>, A. W. Steiner<sup>2,10</sup> & M. Wiescher<sup>2,6</sup>

- How it works
- Why it wasn't noticed before
- What it means for X-ray bursts and superbursts

#### illustration with a simple liquid-drop model (Mackie & Baym '77, following Haensel & Zdunik '90)



see poster by A. Deibel

### crust reactions | deep heating

Bisnovatyi-Kogan and Chechetkin '74; Sato '79; Haensel & Zdunk '90; Gupta et al. '07; Steiner '12; Schatz et al. '13; Deibel et al. (in prep)

### Review | electron captures

(Bisnovatyi-Kogan & Chechetkin; Sato; Haensel & Zdunik; Gupta et al.)





![](_page_33_Figure_0.jpeg)

## Urca pairs | which nuclei?

![](_page_34_Figure_1.jpeg)

# Urca pairs | which nuclei?

![](_page_35_Figure_1.jpeg)

#### **Compare** | neutrino luminosities

![](_page_36_Figure_1.jpeg)

### Urca shell cold layer

![](_page_37_Figure_1.jpeg)

### Urca shell cold layer

![](_page_38_Figure_1.jpeg)

### superburst ignition

![](_page_39_Figure_1.jpeg)

![](_page_40_Picture_0.jpeg)

### Facility for Rare Isotope Beams

Michigan State University

## Urca pairs | which nuclei?

![](_page_41_Figure_1.jpeg)

### conclusions

- Soft X-ray transients provide information on physics of interior
  - radii from surface thermal emission
  - thermal conductivity, specific heat of crust from cooling
- electron captures/beta decays in outer crust set a limit on the crust temperature: need additional heating in outer crust to explain superbursts?