РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ им. А.Ф. ИОФФЕ

На правах рукописи

ГЛАЗОВ МИХАИЛ МИХАЙЛОВИЧ

СПИНОВАЯ ДИНАМИКА ЭЛЕКТРОНОВ И ЭКСИТОНОВ В КВАНТОВЫХ ЯМАХ И КВАНТОВЫХ ТОЧКАХ

Специальность 01.04.07 – физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

> Санкт-Петербург 2008

Работа выполнена в Физико-техническом институте им. А.Ф. Иоффе РАН

Научный руководитель:

доктор физико-математических наук,	профессор Ивченко Е.Л.
Официальные оппоненты:	
доктор физико-математических наук,	профессор Козуб В.И.
доктор физико-математических наук,	профессор Мамаев Ю.А.
Ведущая организация:	Институт физики твердого тела РАН

Защита состоится "<u>27</u>" <u>марта</u> 2008 г. в <u>15⁰⁰</u> часов на заседании диссертационного совета Д 002.205.01 при Физико-техническом институте им. А.Ф. Иоффе РАН по адресу:

194021, Санкт-Петербург, ул. Политехническая, 26.

С диссертацией можно ознакомиться в библиотеке Физико-технического института им. А.Ф. Иоффе РАН.

Автореферат разослан "<u>27</u>" февраля 2008 г.

Ученый секретарь диссертационного совета кандидат физико-математических наук

Петров А.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы.</u> Теоретические и экспериментальные исследования полупроводниковых наноструктур составляют наиболее активно развивающуюся область современной физики конденсированного состояния [1]. Движение носителей заряда в таких структурах ограничено в одном или нескольких направлениях, что приводит за счет эффектов размерного квантования к качественной перестройке энергетического спектра носителей заряда и других квазичастиц. Это существенным образом сказывается на оптических и кинетических свойствах низкоразмерных систем, приводит к ряду новых физических явлений.

С другой стороны, в физике твердого тела возрастающий интерес привлекают спиновые явления. Понижение симметрии наноструктур по отношению к объемным полупроводникам, с одной стороны, и локализация носителей на меньших масштабах, с другой, увеличивают роль спин-орбитального взаимодействия в таких системах. В последние годы значительные усилия направлены на изучение специфики спин-орбитального взаимодействия в низкоразмерных структурах, на исследование спиновой динамики носителей заряда и их комплексов. Достижения в области оптической ориентации спинов электронов и дырок, инжекции спин-поляризованных носителей в гетероструктуры, управлении спиновой динамикой носителей внешними полями открывают возможности для создания устройств, в основе которых заложено использование дополнительной степени свободы частиц – их спина [2]. Особое внимание приковывает изучение спиновой динамики в квантовых точках, где электроны и дырки демонстрируют очень большие времена спиновой релаксации, в то время как их комплексы (экситоны) теряют свой спин на значительно меньших временных масштабах. Перспективной выглядит возможность создания структур, сочетающих полупроводниковые и магнитные материалы, в частности, квантовых точек, содержащих единичные магнитные ионы [3].

Исследование спиновой динамики носителей заряда в полупроводниковых наноструктурах позволяет извлекать информацию как о кинетических пара-

метрах электронов и дырок (таких как времена релаксации носителей по спину и по импульсу, частоты межчастичных столкновений), так и о тонкой структуре энергетического спектра носителей заряда и их комплексов.

<u>Целью</u> настоящего исследования является изучение кинетических и оптических эффектов в полупроводниковых гетероструктурах: квантовых ямах и квантовых точках – обусловленных процессами спиновой динамики носителей заряда и тонкой структурой их энергетического спектра.

Научная новизна работы состоит в решении конкретных задач:

- Построить теорию спиновой релаксации электронов проводимости в полупроводниковых квантовых ямах с учетом межчастичного взаимодействия.
- 2. Изучить влияние внешнего магнитного поля на спиновую динамику электронного газа в квантовых ямах, а также спиновые биения, обусловленные спин-орбитальным расщеплением дисперсионной кривой носителей.
- Построить теорию оптической ориентации двумерного электронного газа низкой плотности при резонансном возбуждении экситонов и трионов и разработать модель спиновых биений, возникающих в такой системе во внешнем магнитном поле.
- Исследовать тонкую структуру и спектры фотолюминесценции возбужденных состояний экситона в квантовых точках, в частности, в точках, содержащих единичные магнитные ионы.

<u>Практическая значимость</u> работы заключается в том, что в ней впервые исследовано влияние электрон-электронного взаимодействия на спиновую релаксацию носителей; впервые подробно изучен вопрос о замедлении магнитным полем спиновой релаксации электронов в квантовых ямах; впервые построена теория тонкой структуры возбужденных состояний экситонов в изотропных и анизотропных квантовых точках, в том числе точках, содержащих магнитный ион. Сопоставление полученных результатов с экспериментальными данными позволяет изучать тонкую структуру энергетического спектра носителей

4

заряда и их комплексов, а также определять ряд кинетических параметров электронов и дырок.

Основные положения выносимые на защиту:

- Электрон-электронные столкновения, сохраняющие полный импульс ансамбля носителей, замедляют спиновую релаксацию электронного газа в механизме Дьяконова-Переля так же, как и процессы приводящие к потере полного импульса системы.
- С увеличением степени поляризации электронного газа обменное взаимодействие между электронами приводит к стабилизации спина ансамбля носителей.
- В подавлении спиновой релаксации двумерного электронного газа внешним магнитным полем циклотронный и ларморовский эффекты могут интерферировать.
- Резонансное возбуждение синглетного состояния триона циркулярно поляризованным светом приводит к спиновой ориентации резидентных электронов в квантовых ямах *n*-типа.
- 5. Тонкая структура энергетического спектра экситонов в квантовых точках с единичным ионом марганца определяется конкуренцией между электрон-дырочным дальнодействующим обменным взаимодействием и взаимодействием носителей с *d*-электронами магнитного иона.

<u>Апробация работы.</u> Результаты работы докладывались на семинарах ФТИ им. А.Ф. Иоффе РАН, ИТФ им. Л.Д. Ландау РАН, на рабочих семинарах университетов Клермон-Феррана (Франция) и Саутгемптона (Великобритания), международных симпозиумах "Nanostructures: Physics and Technology" (С.-Петербург 2005, 2007) и VI Российской конференции по физике полупроводников (С.-Петербург 2003), международной школе "2nd International School оп Nanophotonics" (Маратея, Италия 2007, приглашенный доклад). <u>Публикации.</u> По результатам исследований, проведенных в диссертации, опубликовано 10 печатных работ, список которых приведен в Заключении.

<u>Структура и объем диссертации.</u> Диссертация состоит из Введения, четырех глав, Заключения и списка литературы. Она содержит 113 страниц текста, включая 21 рисунок и одну таблицу. Список цитируемой литературы содержит 124 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Во **Введении** обоснована актуальность темы исследований, сформулированы цель и научная новизна работы, перечислены основные положения, выносимые на защиту, а также кратко изложено содержание диссертации.

<u>Первая глава</u> "Влияние межчастичного взаимодействия на спиновую релаксацию электронов" посвящена теоретическому исследованию влияния электрон-электронного взаимодействия на спиновую релаксацию носителей в механизме Дьяконова-Переля.

§1.1 представляет собой обзор теоретических и экспериментальных исследований, посвященных спиновой релаксации в полупроводниках. Приводится качественное описание прецессионного механизма спиновой релаксации (механизма Дьяконова-Переля). Спин-зависимые слагаемые в эффективном гамильтониане носителей играют роль эффективного магнитного поля, зависящего от волнового вектора электрона k. Рассеяние носителей сопровождается случайными изменениями этого поля, поэтому при $\Omega_k \tau \ll 1$ неравновесная спиновая поляризация релаксирует со скоростью $\tau_s^{-1} \sim \Omega_k^2 \tau$, где Ω_k – частота спиновой прецессии в эффективном магнитном поле и τ – микроскопическое время рассеяния электрона [4]. В первом параграфе ставится вопрос о вкладе электрон-электронных столкновений в постоянную времени τ .

Во <u>втором</u> параграфе построена кинетическая теория спиновой релаксации носителей с учетом межчастичного взаимодействия. В начале параграфа эффекты электрон-электронного взаимодействия обсуждаются на качественном уровне. Электрон-электронные столкновения приводят, во-первых, к случайным изменениям волнового вектора данного носителя и, поэтому, вносят аддитивный вклад в τ^{-1} так же, как и упругие процессы релаксации импульса. Во-вторых, обменное взаимодействие между спин-поляризованными носителями приводит к дополнительной стабилизации полного спина. В §1.2.1 получено кинетическое уравнение для спиновой матрицы плотности электронов. В §1.2.2 конкретизируется вид эффективной частоты спиновой прецессии Ω_k в различных полупроводниковых структурах.

§1.2.3 посвящен решению кинетического уравнения при произвольной степени вырождения электронного газа и произвольной степени поляризации носителей. В нем получено уравнение баланса для полного спина ансамбля электронов и выведены выражения для компонент тензора обратных времен спиновой релаксации. В последующих двух подпараграфах §1.2.4 и §1.2.5 анализируются случаи невырожденного электронного газа, электронного газа с произвольной степенью вырождения и роль высокой степени поляризации носителей. При малой степени поляризации компоненты тензора обратных времен спиновой релаксации для электронов в квантовой яме, выращенной из материалов с решеткой цинковой обманки вдоль оси $z \parallel [001]$, можно представить в виде

$$\frac{1}{\tau_{x'x'}} = \left(\frac{\beta_+ k_0}{\hbar}\right)^2 \tau , \quad \frac{1}{\tau_{y'y'}} = \left(\frac{\beta_- k_0}{\hbar}\right)^2 \tau , \quad \frac{1}{\tau_{zz}} = \frac{1}{\tau_{x'x'}} + \frac{1}{\tau_{y'y'}} , \tag{1}$$

где константы β_{\pm} описывают линейные по k вклады в спиновое расщепление дисперсионной кривой носителей, а именно $\Omega_{k,x'} = \beta_- k_{y'}/\hbar$, $\Omega_{k,y'} = -\beta_+ k_{x'}/\hbar$, $\Omega_{k,z} = 0$, оси $x' \| [1\bar{1}0]$, $y' \| [110]$. Величина k_0 имеет размерность волнового вектора, ее удобно выбрать для невырожденных электронов равной $(2mk_BT/\hbar^2)^{1/2}$, где m – эффективная масса электрона, k_B – постоянная Больцмана, T – температура, и равной фермиевскому волновому вектору k_F при анализе ситуации с произвольной степенью вырождения носителей. Выполнены численные расчеты параметра τ для электронного газа произвольной степени вырождения в зависимости от температуры, концентрации носителей и параметров квантовой ямы. Температурная зависимость времени спиновой релаксации, определяемая электрон-электронными столкновениями, имеет немонотонный характер. В вырожденном электронном газе частота столкновений с увеличением температуры сначала не зависит от температуры, пока $\tau \propto T^{-2}$ не станет меньше τ_p , времени релаксации импульса двумерного газа. Затем частота столкновений возрастает как функция температуры, при этом $\tau_s \propto T^2$, достигает максимума при смене статистики носителей на невырожденную ($T \sim$ $T_F = \hbar^2 k_F^2/2mk_B$), после чего $\tau_s \propto T^{-2}$.

<u>Третий</u> параграф первой главы посвящен сопоставлению развитой теории и экспериментальных данных, полученных на структурах с квантовыми ямами GaAs/ Ga_{0.67}Al_{0.33}As. Время спиновой релаксации измерялось в экспериментах "накачка – зондирование". Наблюдаемые на этих образцах при низких температу-

Рис. 1: Температурная зависимость времени спиновой релаксации. Точки – экспериментальные данные: сплошные квадраты соответствуют времени релаксации при наблюдаемом экспоненциальном спаде спиновой поляризации, открытые квадраты – значения $(\Omega_{k_F}^2 \tau^*)^{-1}$, полученные из анализа спиновых биений. Линии представляют результаты расчета, выполненного с использованием экспериментальных значений Ω_{k_F} , температурной зависимости τ_p с учетом (сплошная и пунктирная) и в пренебрежении (точечная) электрон-электронными столкновениями.

рах ($T \lesssim 5$ K) спиновые биения [5] позволяют определить частоту спиновой прецессии на уровне Ферми и время столкновений *одного* электрона τ^* , соответствующее наблюдаемому затуханию биений. Экспериментальные значения времени релаксации *z* компоненты спина τ_{zz} представлены на рис. 1 квадратами. Кривые на рис. 1 – результат теоретического расчета. Все параметры (спиновое расщепление, концентрация носителей и температурная зависимость времени релаксации электронного газа по импульсу, τ_p) были известны из эксперимента. Сплошная и пунктирная кривые показывают времена спиновой релаксации в механизме Дьяконова-Переля и величины $(\Omega_{k_F}^2 \tau)^{-1}$, соответственно, рассчитанные с учетом как электрон-электронных столкновений, так и упругого рассеяния по импульсу, а кривая, показанная точками – только с учетом τ_p . Эффектами высокой спиновой поляризации пренебрегалось.

Из рис. 1 видно, что количественное и качественное описание температурной зависимости времени спиновой релаксации электронов возможно только с учетом межчастичного взаимодействия. Заметные различия между теорией и экспериментом, наблюдаемые при температурах, превышающих 200 K, связаны, по-видимому, с увеличением роли вклада Рашбы в спиновое расщепление, с заселением второй подзоны размерного квантования носителей, а также с уменьшением концентрации электронов в квантовой яме. В <u>четвертом</u> параграфе обобщены основные результаты главы.

Вторая глава "Спиновая динамика двумерных электронов в условиях электронного парамагнитного резонанса" посвящена теоретическому изучению влияния внешнего магнитного поля на спиновую релаксацию носителей в механизме Дьяконова-Переля. Параграф §2.1 содержит обзор теоретических и экспериментальных исследований по эффектам магнитного поля на спиновую релаксацию. Во <u>втором</u> параграфе выведено кинетическое уравнение для функции распределения электронов по спину и получены выражения для компонент тензора обратных времен спиновой релаксации Г в классических магнитных полях. В условиях электронного парамагнитного резонанса независимо измеряются времена *продольной* T_1 и *поперечной* T_2 релаксации спина [6]. В §2.2.1 и §2.2.2 показано, что $T_1 = \Gamma_{z'z'}^{-1}$, где ось z' направлена по магнитному полю, а $T_2 = 2/(\Gamma_{x'x'} + \Gamma_{y'y'})$ (оси x', y' лежат в плоскости, перпендикулярной магнитному полю).

В частном случае, когда внешнее поле ориентировано по нормали к яме

$$\frac{1}{T_1} = \frac{4\tau_p k_F^2}{\hbar^2} \left[\frac{\beta_1^2}{1 + (\omega_{\rm L} + \omega_{\rm C})^2 \tau_1^2} + \frac{\beta_2^2}{1 + (\omega_{\rm L} - \omega_{\rm C})^2 \tau_1^2} \right],\tag{2}$$

где константы $\beta_{1,2} = (\beta_+ \mp \beta_-)/4$ описывают вклады Дрессельхауза и Рашбы, соответственно, ω_C и ω_L – циклотронная и ларморовская частоты. Из (2) видно, что внешнее магнитное поле замедляет спиновую релаксацию электронов как за счет циклотронного, так и за счет ларморовского эффектов. Первый механизм обусловлен тем, что циклотронное движение носителей приводит к изменению волнового вектора данного электрона и действует как дополнительное рассеяние носителей, что замедляет спиновую релаксацию. Ларморовский эффект внешнего магнитного поля модифицирует прецессию спина, уменьшая углы его отклонения от первоначального направления. Циклотронный и ларморовский эффекты интерферируют в замедлении спиновой релаксации, и в зависимости от знака *g*-фактора носителей и типа спинового расщепления, могут как совместно подавлять спиновую релаксацию, так и частично компенсировать друг-друга.

Параграф <u>три</u> посвящен сопоставлению развитой теории с экспериментальными данными, полученными методом электронного парамагнитного резонанса на образцах с квантовыми ямами Si/SiGe. На рис. 2 квадратами показа-

Рис. 2: Поперечное время спиновой релаксации в зависисмости от угла между магнитным полем и нормалью к структуре. Квадраты – экспериментальные данные, полученные на двух образцах Si/Si_{0.75}Ge_{0.25}. Сплошные кривые – теоретический расчет.

ны экспериментальные значения времени поперечной релаксации спина T_2 , а сплошными кривыми – их подгонка, единственным варьируемым параметром была частота спиновой прецессии на уровне Ферми Ω_{k_F} . Наилучшее согласие эксперимента и теории было достигнуто при $\Omega_{k_F} = 4 \times 10^8 \text{ c}^{-1}$, а для образца на правой панели – $\Omega_{k_F} = 1.1 \times 10^9 \text{ c}^{-1}$. Порядок величин согласуется с теоретическими оценками эффекта Рашбы в таких структурах [7].

<u>Четвертый</u> параграф посвящен спиновой динамике и эффектам магнитного поля в структурах со спиновым расщеплением, сопоставимым со столкновительной шириной уровня. В таком случае наблюдаются квантовые спиновые биения [8]. В §2.4.1 теоретически исследуются спиновые биения в отсутствие внешнего магнитного поля. Изучается затухание биений, обусловленное рассеянием носителей, а также их дефазировка за счет анизотропии спинового расщепления и теплового уширения функции распределения электронов. В §2.4.2 исследуется влияние внешнего магнитного поля, направленного по оси роста *z* квантовой ямы, на биения продольной компонеты спина. Показано, что магнитное поле увеличивает частоту биений и приводит к уменьшению их затухания. В <u>пятом</u> параграфе обобщены основные результаты главы.

<u>Третья глава</u> "Спиновые биения электронного газа во внешнем магнитном поле" посвящена исследованию оптической ориентации и динамики поперечных к магнитному полю компонент спина в электронном газе низкой плотности, где $Na_B^2 \lesssim 1$ (N – концентрация носителей, a_B – боровский радиус). Во введении (§3.1) приводится краткий обзор литературы по данной тематике и качественно описывается модель ориентации спинов резидентных электронов при резонансном фотовозбуждении синглетного состояния X^- триона.

Во <u>втором</u> параграфе главы анализируются механизмы формирования оптических сигналов Керра и Фарадея в экспериментах "накачка – зондирование". Показано, что коэффициент отражения линейно поляризованного зондирующего импульса от квантовой ямы на частоте экситонного или трионного резонанса модулируется пропорционально полному спину резидентных электронов и фоторожденных экситонов, наведенному циркулярно поляризованной накачкой. Обсуждаются физические механизмы такой модуляции.

В §3.3.1 построена теория спиновых биений во внешнем магнитном поле при возбуждении трионного резонанса. Показано, что при поглощении циркулярно поляризованного σ^+ (σ^-) света для формирования синглетного состояния триона из электронного газа изымаются электроны с проекцией спина +1/2(-1/2) на ось роста. Это приводит к ориентации резидентных электронов по спину. Продемонстрировано, что эта ориентация проявляется в экспериментах "накачка – зондирование" в случае, когда времена спиновой релаксации дырки в трионе τ_s^T и спиновой релаксации резидентных электронов τ_s различаются, или при приложении внешнего магнитного поля в плоскости квантовой ямы. Получены аналитические выражения, описывающие динамику спина ансамбля электронов при произвольном соотношении времен спиновой релаксации в зависимости от величины внешнего магнитного поля. Исследовано насыщение спиновой поляризации резидентных носителей с ростом интенсивности накачки.

Подпараграф §3.3.2 посвящен ориентации спинов резидентных электронов в случае, когда энергия фотонов накачки близка к экситонному резонансу. Исследованы механизмы насыщения спиновой поляризации электронов, обусловленные спиновой релаксацией электронов, связанных в экситон.

В <u>четвертом</u> параграфе разработанная теория сопоставляется с экспериментальными данными по спиновой динамике в магнитном поле в квантовой яме

Рис. 3: Начальная фаза спиновых биений двумерного электронного газа в зависимости от магнитного поля, приложенного в плоскости ямы. Квадраты – экспериментальные данные. Сплошные кривые – результаты теоретического расчета. Плотность мощности импульса накачки 0.64 Вт/см², импульса зондирования 0.5 Вт/см².

 ${\rm CdTe}/{\rm Cd}_{0.78}{\rm Mn}_{0.22}{\rm Te}$ с концентрацией носителей $N=1.1 imes10^{10}~{\rm cm}^{-2}.$

На рис. 3 квадратами показаны экспериментальные значения начальной фазы спиновых биений двумерного электронного газа при резонансном возбуждении триона в зависимости от магнитного поля. Теоретические расчеты представлены сплошной и штриховой линиями. Глубина и положение минимума определяются значениями времени спиновой релаксации дырки в трионе τ_s^T . Наблюдается качественное согласие экспериментальных результатов и теоретических расчетов. В заключение параграфа построенная нами классическая теория сопоставляется с квантовомеханическим описанием процессов оптической ориентации при резонансном возбуждении трионов, разработанным в [9]. В <u>пятом</u> параграфе обобщены основные результаты главы.

В <u>главе четыре</u> "Тонкая структура и спиновая динамика экситонов в квантовых точках" изучается тонкая структура энергетического спектра состояний экситона в квантовых точках, в том числе в точках, содержащих единичные магнитные ионы Mn²⁺. Она определяется, в первую очередь, дальнодействующим обменным взаимодействием между электроном и дыркой [10], а в квантовых точках с магнитными ионами – обменным взаимодействием между электроном, дыркой и электронами внешней оболочки магнитного иона [3].

Параграф §4.1 содержит обзор литературы, посвященной спиновой динамике носителей заряда и их комплексов в квантовых точках, а также тонкой структуре экситонных состояний.

Во втором параграфе главы построена общая теория определяемой дальнодействующим обменным взаимодействием тонкой структуры экситонных состояний в квантовых точках. Во введении к §4.2 формулируется модель квантового диска, в рамках которой считается, что длина локализации носителей L_z вдоль оси роста структуры $z \parallel [001]$ много меньше радиусов a_e, a_h локализации электронов (дырок) в плоскости $xy \parallel (001)$. Потенциал, описываюций латеральную локализацию электрона и дырки считается параболическим, причем размерное квантование в плоскости структуры предполагается более сильным, чем кулоновское взаимодействие между носителями. Экситонные состояния нумеруются орбитальными индексами, например, состояние $S_e - P_h$ образовано электроном в S состоянии и дыркой в P состоянии, и проекцией спина (углового момента) экситона на ось $z: m_z = s_z + j_z$, где $s_z = \pm 1/2$, $j_z = \pm 3/2$ – проекции спинов электрона и "тяжелой" дырки. Рассматриваются только оптически активные состояния с $m_z = \pm 1$.

В §4.2.1 исследуется тонкая структура *S* – *P* состояния экситона. Показано, что в квантовом диске с изотропным латеральным потенциалом это состо-

яние расщеплено за счет дальнодействующего обменного взаимодействия на три подуровня: верхний и нижний соответствуют проекции углового момента экситона на ось роста, равной 0, а средний уровень двукратно вырожден и соответствует проекции углового момента на ось z, равной ±2. Анизотропия квантовой точки приводит к полному снятию вырождения. Выполнен расчет расщеплений между подуровнями в зависимости от степени анизотропии латерального потенциала.

В §4.2.2 изучается структура энергетического спектра уровня P - P. Продемонстрировано, что в изотропных квантовых точках четырехкратное орбитальное вырождение этого состояния частично снимается кулоновским взаимодействием, причем только один из подуровней обладает орбитальным моментом, равным 0, т.е. является оптически активным. В точках с потенциалом, анизотропным в осях x, y, орбитальное вырождение полностью снимается. Кроме того, дальнодействующее обменное взаимодействие между электроном и дыркой расщепляет оптически активные состояния по микроскопическому дипольному моменту экситона (рис. 4).

Рис. 4: Энергетическая диаграмма уровня P-P для аксиально симметричной [панель (a)] и анизотропной [панель (b)] квантовой точки, содержащей магнитный ион. Нижние индексы в обозначении орбиталей D_{ij} характеризуют симметрию P состояний электрона и дырки. Структура уровней, показанная на панели (b), соответствует случаю, когда магнитный ион расположен на оси y, при этом он не взаимодействует с орбиталью D_{xx} . Величины E_b и V_C характеризуют кулоновское взаимодействие между носителями, E_a , E'_a – анизотропию латерального потенциала, δE_d – анизотропное обменное расщепление P - P уровня, δ_d – обменное взаимодействие экситона с магнитным ионом.

В следующем §4.3 анализируется тонкая структура экситонных состояний

в квантовых точках, содержащих единичные магнитные ионы Mn²⁺. Обменное взаимодействие между электроном, дыркой и полным спином внешней $3d^5$ оболочки Mn имеет короткодействующий вид

$$\mathcal{H}_{Mn} = [A_e s \ \delta(\boldsymbol{r}_0 - \boldsymbol{r}_e) + A_h j \ \delta(\boldsymbol{r}_0 - \boldsymbol{r}_h)]M, \qquad (3)$$

где r_0 , r_e , r_h – радиус-вектор иона марганца, электрона и дырки, соответственно, A_e и A_h – константы связи для электронов зоны проводимости и дырок в валентной зоны с магнитным ионом. Показано, что учет поперечных компонент спина электрона в (3) не приводит к существенным количественным изменениям дальнейших результатов.

В изотропной точке как основной S-S, так и единственный оптически активный возбужденный P-P уровень экситона расщеплены взаимодействием (3) на 6 двукратно вырожденных подуровней (рассматриваются только состояния с $m_z = \pm 1$), см. рис. 4а. Константы, описывающие это расщепление, определяются перекрытием магнитного иона и соответствующих орбиталей.

Анизотропия латерального потенциала квантовой точки приводит к более сложной тонкой структуре основного и возбужденных состояний экситона. В случае, когда анизотропное расщепление основного состояния экситона мало по сравнению со взаимодействием с ионом Mn, качественная структура спектра состояния S - S не меняется. Структура P - P орбиталей зависит от положения магнитного иона в квантовой точке, при этом возможна ситуация, когда один из уровней (например, D_{xx}) не взаимодействует с Mn, и его структура определяется электрон-дырочным обменным взаимодействием, а структура состояния D_{yy} , наоборот, определяется взаимодействием с магнитным ионом (рис. 4b).

Параграф <u>четыре</u> посвящен сравнению разработанной теории и экспериментальных данных по возбуждению микрофотолюминесценции в одиночных точках CdTe/ZnTe, легированных Mn²⁺. Экспериментальные и расчетные спектры возбуждения фотолюминесценции для состояния D_{yy} представлены на рис. 5. Наилучшее согласие достигнуто при следующих параметрах: анизотропное расщепление P - P уровня $\delta E_d = 0.05$ мэВ и расщепление за счет

Рис. 5: Развертки по энергии возбуждения и детектирования экспериментальных спектров возбуждения фотолюминесценции (2 левые панели) и рассчитанные спектры (2 правые панели) при линейно поляризованной накачке в состояние D_{yy} и неполяризованном детектировании.

взаимодействия с ионом марганца $\delta_{yy} = 0.04$ мэВ. Порядок величины δE_d соответствует размерам точки $a_e = 45$ Å и $a_h = 90$ Å. Значение δ_{yy} позволяет оценить координаты магнитного иона в точке, которые оказываются равными $y_0 \approx 0.3a_h, x_0 \ll y_0$. В §4.5 обобщены основные результаты главы.

В <u>Заключении</u> обобщены основные результаты работы:

1. Построена кинетическая теория спиновой релаксации в механизме Дьяконова-Переля с учетом межчастичного взаимодействия. Выведен интеграл электрон-электронных столкновений при произвольной степени поляризации электронного газа.

2. Показано, что электрон-электронные столкновения замедляют спиновую релаксацию по механизму Дьяконова-Переля так же, как и процессы упругого рассеяния, приводящие к релаксации импульса в ансамбле электронов. Обменное взаимодействие между электронами приводит к дополнительному замедлению спиновой релаксации с ростом степени поляризации электронного газа.

3. Теоретически изучена спиновая релаксация двумерных электронов в классических магнитных полях по механизму Дьяконова-Переля при произвольной анизотропии спинового расщепления и ориентации внешнего магнитного поля. Показано, что циклотронный и ларморовский эффекты внешнего магнитного поля либо аддитивно замедляют спиновую релаксацию, либо ча-

16

стично компенсируют друг друга в зависимости от типа доминирующего вклада в спиновое расщепление и знака электронного *g*-фактора.

4. Получено выражение для ширины линии электронного парамагнитного резонанса при произвольной анизотропии спинового расщепления и ориентации магнитного поля по отношению к главным осям квантовой ямы.

5. Продемонстрировано, что спиновые биения в нулевом магнитном поле, наблюдаемые в структурах, где спиновое расщепление превышает столкновительное уширение уровней, затухают за счет анизотропии спинового расщепления, теплового размытия функции распределения носителей и процессов рассеяния электронов.

6. Показано, что резонансное возбуждение синглетного состояния X⁻ триона в квантовой яме с двумерным электронным газом низкой плотности приводит к ориентации резидентных электронов по спину.

7. Построена теория спиновых биений двумерного электронного газа во внешнем магнитном поле при резонансном возбуждении трионных и экситонных состояний. Получены зависимости начальной фазы спиновых биений от величины магнитного поля. Сопоставление построенной теории и экспериментальных данных позволило определить *g*-фактор носителей и время спиновой релаксации электронов.

8. Построена теория расщепления возбужденных состояний экситонов за счет электрон-дырочного дальнодействующего обменного взаимодействия в аксиально симметричных квантовых точках и в точках с малой степенью анизотропии. Показано, что в аксиально симметричных квантовых точках S - Pэкситонный уровень расщепляется на подуровни за счет дальнодействующего обменного взаимодействия, а P - P уровень – за счет прямого кулоновского взаимодействия между электроном и дыркой.

9. В квантовых точках, содержащих единичный магнитный ион, тонкая структура экситонных состояний определяется конкуренцией анизотропного обменного взаимодействия и обменного взаимодействия электрон-дырочной пары с магнитным ионом, при этом спектр возбужденных состояний экситона

17

оказывается чувствительным к положению иона относительно главных осей квантовой точки.

10. Сопоставление экспериментальных спектров возбуждения фотолюминесценции одиночных квантовых точек, легированных Mn²⁺, позволило определить константы обменного взаимодействия между носителями, связанными в нульмерный экситон, и 3*d*-электронами магнитного иона.

Основные результаты диссертационной работы изложены в публикациях:

- [A1] М.М. Глазов, Е.Л. Ивченко, Прецессионный механизм спиновой релаксации при частых электрон-электронных столкновениях // Письма в ЖЭТФ 75, 476–478 (2002).
- [A2] М.М. Глазов, Механизм спиновой релаксации Дьяконова-Переля при частых электрон-электронных столкновениях в квантовой яме конечной ширины // ФТТ 45, 1108–1111 (2003).
- [A3] M.M. Glazov, E.L. Ivchenko, Dyakonov-Perel's spin relaxation under electronelectron collisions in QWs // В сб. "Optical Properties of 2D Systems with Interacting Electrons" под ред. W.J. Ossau и R. Suris, 181-192 (2003).
- [A4] М.М. Глазов, Е.Л. Ивченко, Влияние электрон-электронного взаимодействия на спиновую релаксацию носителей тока в полупроводниках // ЖЭТФ 126, 1465–1478 (2004).
- [A5] W.J.H. Leyland, G.H. John, R.T. Harley, M.M. Glazov, E.L. Ivchenko, D.A. Ritchie, I. Farrer, A.J. Shields, and M. Henini, Enhanced spin-relaxation time due to electron-electron scattering in semiconductor quantum wells // Phys. Rev. B 75, 165309 (2007).
- [A6] M.M. Glazov, Magnetic field effects on spin relaxation in heterostructures // Phys. Rev. B 70, 195314 (2004).
- [A7] M.M. Glazov, Effect of structure anisotropy on low temperature spin dynamics in quantum wells // Solid State Commun. 142, 531 (2007).

- [A8] E.A. Zhukov, D.R. Yakovlev, M. Bayer, M.M. Glazov, E.L. Ivchenko, G. Karczewski, T. Wojtowicz and J. Kossut, Spin coherence of a two-dimensional electron gas induced by resonant excitation of trions and excitons in CdTe/(Cd,Mg)Te quantum wells // Phys. Rev. B 76, 205310 (2007).
- [A9] M.M. Glazov, E.L. Ivchenko, R. v. Baltz and E.G. Tsitsishvili, Fine structure of excited excitonic states in quantum disks // Proc. Int. Symp.
 "Nanostructures: Physics and Technology"(St-Petersburg, Russia, 2005) pp. 348-349.
- [A10] M.M. Glazov, E.L. Ivchenko, L. Besombes, Y. Léger, L. Maingault, and H. Mariette // Fine structure of exciton excited levels in a quantum dot with a magnetic ion, Phys. Rev. B 75, 205313 (2007).

Список литературы

- Ivchenko E. L. Optical Spectroscopy of Semiconductor Nanostructures. Alpha Science, Harrow UK, 2005.
- [2] Zutic I., Fabian J., Sarma S. D. Spintronics: Fundamentals and applications // Rev. Mod. Phys. - 2004. - Vol. 76, no. 2. - P. 323.
- [3] Probing the spin state of a single magnetic ion in an individual quantum dot /
 L. Besombes, Y. Leger, L. Maingault et al. // Phys. Rev. Lett. 2004. Vol. 93, no. 20. P. 207403.
- [4] Дьяконов М. И., Перель В. И. Спиновая релаксация электронов проводимости в полупроводниках без центра инверсии // ФТТ. — 1972. — Т. 13. — С. 3581.
- [5] Precession and motional slowing of spin evolution in a high mobility twodimensional electron gas / M. A. Brand, A. Malinowski, O. Z. Karimov et al. // *Phys. Rev. Lett.* – 2002. – Vol. 89, no. 23. – P. 236601.

- [6] Wilamowski Z., Jantsch W. Suppression of spin relaxation of conduction electrons by cyclotron motion // Phys. Rev. B. - 2004. - Vol. 69, no. 3. -P. 035328.
- [7] Nestoklon M. O., Golub L. E., Ivchenko E. L. Spin and valley-orbit splittings in SiGe/Si heterostructures // Phys. Rev. B. - 2006. - Vol. 73, no. 23. -P. 235334.
- [8] Гриднев В. Н. Теория биений фарадеевского вращения в квантовых ямах с большой величиной спинового расщепления // Писъма ЖЭТФ. — 2001. — Т. 74. — С. 417.
- [9] Optical readout and initialization of an electron spin in a single quantum dot / A. Shabaev, A. L. Efros, D. Gammon, I. A. Merkulov // Phys. Rev. B. - 2003. - Vol. 68, no. 20. - P. 201305.
- [10] Гупалов С. В., Ивченко Е. Л., Кавокин А. В. Тонкая структура уровней локализованных экситонов в квантовых ямах // ЖЭТФ. – 1998. – Vol. 113. – Р. 703.