На правах рукописи

ГРЕШНОВ АНДРЕЙ АНАТОЛЬЕВИЧ

ЦЕЛОЧИСЛЕННЫЙ КВАНТОВЫЙ ЭФФЕКТ ХОЛЛА И ЦИКЛОТРОННЫЙ РЕЗОНАНС В ДВУМЕРНОМ ЭЛЕКТРОННОМ ГАЗЕ С РАЗЪЕДИНЕННЫМИ УРОВНЯМИ ЛАНДАУ

Специальность 01.04.10 – физика полупроводников

 $ABTOPE\Phi EPAT$

диссертации на соискание ученой степени кандидата физико-математических наук

> Санкт-Петербург 2008

Работа выполнена в Учреждении Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН

Научный руководитель: доктор физико-математических наук, профессор Зегря Георгий Георгиевич

Официальные оппоненты:

Доктор физико-математических наук, профессор Горбацевич Александр Алексеевич, Санкт-Петербургский физико-технологический научно-образовательный центр РАН. Доктор физико-математических наук, профессор Аверкиев Никита Сергеевич, Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН.

Ведущая организация: Петербургский институт ядерной физики им. Б.П. Константинова РАН

Защита состоится "<u>20</u>" ноября 2008 г. в <u>12.00</u> часов на заседании диссертационного совета Д 002.205.02 при Учреждении Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН по адресу: 194021, Санкт-Петербург, ул. Политехническая, 26.

С диссертацией можно ознакомиться в библиотеке Учреждения Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН

Автореферат разослан "____ 2008 г. Ученый секретарь диссертационного совета доктор физико-математических наук

Сорокин Л.М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации.

Двумерные полупроводниковые гетероструктуры являются в настоящее время предметом интенсивных экспериментальных и теоретических исследований и представляют собой динамично развивающуюся область физики полупроводников [1]. Движение носителей заряда в таких системах ограничено слоями гетероструктуры, что приводит к квантованию спектра носителей вдоль оси роста (эффекту размерного квантования). Варьирование параметров гетероструктур позволяет модифицировать вид спектра носителей, и тем самым управлять их оптическими и транспортными свойствами.

Приложение к полупроводниковым материалам магнитного поля является мощным инструментом, позволяющим экспериментально определить базовые параметры полупроводника, такие как тип и концентрация носителей, их эффективную массу [2],[3]. Этим и определяется актуальность теоретических и экспериментальных исследований оптических и транспортных свойств полупроводниковых материалов и гетероструктур на их основе в магнитных полях. Поскольку движение носителей в плоскости двумерной гетероструктуры не является, строго говоря, свободным, а сопровождается рассеянием на колебаниях кристаллической решетки, примесях и дефектах, для надежного определения параметров энергетического спектра необходимы сильные магнитные поля и низкие температуры.

Теория циклотронного резонанса, эффектов Холла, Шубникова-де Гааза, де Гааза-ван Альфена, разработанная для трехмерного случая, может быть непосредственно обобщена на случай двумерных гетероструктур лишь в области достаточно высоких температур и слабых магнитных полей. При низких температурах в сильных магнитных полях в двумерных гетероструктурах наблюдается квантовый эффект Холла – принципиально новое по сравнение с трехмерным случаем явление, открытое в 1980г. Клаусом фон Клитцингом [4]. Сутью квантового эффекта Холла является наличие серии плато на зависимостях внедиагональной (холловской) компоненты тензора проводимости от магнитного поля или концентрации носителей, в области которых диагональная компонента тензора проводимости обращается в нуль. Актуальность диссертации обусловлена отсутствием последовательных микроскопических теорий, описывающих поведение компонент тензора проводимости двумерного электронного газа при низких температурах в зависимости от напряженности приложенного магнитного поля.

Целью работы является теоретическое исследование спектра носителей и вида одночастичных состояний в сильных магнитных полях с учетом хаотического потенциала, создаваемого случайно расположенными примесями и дефектами, изучение влияния вида хаотического потенциала на зависимости компонент тензора проводимости от магнитного поля и концентрации носителей, исследование эффектов самосогласованного электростатического потенциала в двумерных гетероструктурах с несколькими уровнями размерного квантования в сильных магнитных полях, изучение особенностей циклотронного резонанса в разъединенных гетероструктурах II типа InAs/GaSb.

Научная новизна работы состоит в решении следующих задач:

- Определение спектров носителей и вида одночастичных состояний в сильных магнитных полях при наличии хаотического потенциала, корреляционная длина которого сравнима с магнитной длиной. Расчет спектров носителей в одиночных и двойных квантовых ямах в наклонном магнитном поле.
- Расчет компонент тензора проводимости двумерного электронного газа в пределе сильного магнитного поля (разъединенных уровней Ландау) и анализ их зависимостей от фактора заполнения в случае резкого и плавного хаотических потенциалов.
- Расчет спектров циклотронного резонанса в разъединенных гетероструктурах II типа InAs/GaSb. Анализ влияния наклона магнитного поля на форму линии циклотронного резонанса.
- Анализ эффектов самосогласованного электростатического потенциала в квантовых ям с несколькими уровнями размерного квантования в сильных магнитных полях.

<u>Практическая значимость работы</u> заключается в том, что в ней впервые комплексно исследовано влияние вида хаотического потенциала примесей и дефектов на компоненты тензора проводимости двумерного электронного газа в случае сильного магнитного поля (разъединенных уровней Ландау); впервые аналитически описано влияние самосогласованного электростатического потенциала на спектр носителей в гетероструктурах с несколькими уровнями размерного квантования в присутствии сильного магнитного поля. Показано, что анализ поведения компонент тензора проводимости в сильных магнитных полях может быть полезен для определения параметров хаотического потенциала. Теоретическое исследование спектра носителей в наклонных магнитных полях позволило объяснить эффект подавления расщепления линии циклотронного резонанса.

Основные положения, выносимые на защиту:

- В квантовых ямах с несколькими заполненными уровнями размерного квантования уровни Ландау, относящиеся к разным уровням размерного квантования, могут быть вырожденными в определенных диапазонах концентрации носителей и магнитных полей.
- 2. Пиковые величины продольной проводимости в режиме целочисленного квантового эффекта Холла в случае резкого хаотического потенциала возрастают с номером уровня Ландау *n*. Имеет место приближенная линейная зависимость $\sigma_{xx}^{(n)}$ от *n*, причем $\sigma_{xx}^{(0)} = (0.55 \pm 0.03)e^2/h, \ \sigma_{xx}^{(1)} = (1.08 \pm 0.04)e^2/h.$
- Увеличение корреляционной длины хаотического потенциала по сравнению с магнитной длиной приводит к увеличению ширины плато целочисленного квантового эффекта Холла и уменьшению пиковых величин продольной проводимости.
- 4. Наклон магнитного поля относительно оси роста приводит к подавлению расщепления линии циклотронного резонанса в разъединенных гетероструктурах InAs/GaSb.

Апробация работы. Результаты работы докладывались на научных семинарах ФТИ им. А.Ф. Иоффе РАН, университета г.Дарем (Великобритания), на международных конференциях "Nanostructures: Physics and Technology" (С.-Петербург, 2003; Новосибирск, 2007), "International Conference on the Physics and Application of High Magnetic Fields in Semiconductor Physics" (Вюрцбург, Германия, 2006; Сан-Педро, Бразилия, 2008), "17th International Conference on Electronic Properties of Two-dimensional Systems" (Генуя, Италия, 2007), на VI и VIII Российских Конференциях по физике полупроводников (С.-Петербург, 2003; Екатеринбург, 2007).

<u>Публикации.</u> По результатам исследований, проведенных в диссертации, опубликовано 7 статей в реферируемых российских и зарубежных журналах.

<u>Структура и объем диссертации.</u> Диссертация состоит из Введения, четырех глав, Заключения и списка литературы. Она содержит 110 страниц текста, включая 28 рисунков и 1 таблицу. Список цитируемой литературы содержит 93 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Во **Введении** обоснована актуальность темы исследований, сформулированы цель и научная новизна работы, перечислены основные положения, выносимые на защиту, а также изложена структура диссертации.

В <u>первой главе</u> выполнен исторический обзор литературы, посвященной теоретическим и экспериментальным исследованиям двумерного электронного газа в сильных магнитных полях. Раздел 1.1 посвящен обзору экспериментальных работ по наблюдению эффекта Шубниковаде Гааза в полупроводниковых структурах с двумерным электронным газом и теоретическим работам, в которых предложено описание двумерных шубниковских осцилляций в рамках так называемого самосогласованного борновского приближения. Раздел 1.2 посвящен обзору теоретических работ по целочисленному квантовому эффекту Холла, концепции скейлинга и описанию эффекта в рамках нелинейной *σ*модели. Сформулированы главные выводы теории, область их применимости и возможности их проверки. Раздел 1.3 посвящен обзору работ, в которых экспериментальными и численными методами изучались пиковые величины продольной проводимости в режиме целочисленного квантового эффекта Холла. Показано, что имеется большой разброс в количественных данных различных литературных источников. Раздел 1.4 посвящен обзору работ по циклотронному резонансу в полупроводниковых структурах с двумерным электронным газом в поперечном и наклонном магнитных полях. Обсуждается проблема ширины и формы линии циклотронного резонанса в сильных магнитных полях, а также эффект наклона магнитного поля.

Вторая глава диссертации посвящена спектру носителей заряда и структуре электронных состояний в двумерных гетероструктурах в сильных магнитных полях. В разделе 2.1 сформулирована модель двумерного электронного газа в сильном магнитном поле, в рамках которой проводятся дальнейшие исследования (помимо раздела 2.6). Рассматривается случай строго нулевой температуры T = 0, межэлектронным взаимодействием и спин-орбитальными эффектами пренебрегается. Взаимодействие носителей заряда со случайно расположенными примесями и дефектами считается упругим и описывается с помощью двумерного хаотического потенциала $V_{imp}(x, y)$. Рассматривается случай разъединенных уровней Ландау, $\Gamma \ll \hbar \omega_c$ (здесь Γ – ширина уровней Ландау). Сформулированы критерии резкого и плавного хаотического потенциалов в терминах корреляционной длины хаотического потенциала λ и магнитной длины $a_H = \sqrt{\hbar c/eB}$: $\lambda \ll a_H$ соответствует случаю резкого хаотического потенциала, $\lambda \gg r_c = \sqrt{2n+1}a_H - случаю плавного ха$ отического потенциала. Случай плавного хаотического потенциала реализуется экспериментально в модуляционно-легированных квантовых ямах на основе чистого материала (обычно GaAs), случай резкого хаотического потенциала – в квантовых ямах на основе твердых растворов, например $In_{T}Ga_{1-T}As$. В разделе 2.2 предложен подход к вычислению плотности состояний в сильном магнитном поле, основанный на методе моментов [5]. Данный подход является строго математически обоснованным, в отличие от так называемого самосогласованного борновского приближения, предложенного в работе [6]. Кроме того, в разделе 2.2 рассматривается вопрос о подмешивании уровней Ландау, учет которого в главном порядке по $\Gamma/\hbar\omega_c$ необходим для последующих расчетов компонент тензора проводимости. В разделах 2.3 и 2.4 подробно изучены случаи плавного хаотического потенциала, $\lambda \gg r_c = \sqrt{2n+1}a_H$, и резкого хаотического потенциала, $\lambda \ll a_H$. Проанализирована структура гамильтониана, плотность состояний, вид волновых функций на последовательных уровнях Ландау, подмешивание уровней Ландау. Показано, что в случае плавного хаотического потенциала плотность состояний и вид волновых функций на последовательных уровнях Дандау, подмешивание уровнях Ландау. Показано, что в случае плавного хаотического потенциала плотность состояний и вид волновых функций на последовательных уровнях Ландау повторяются (в пределе $\lambda/r_c \to \infty$). Для случая резкого хаотического потенциала получены точные аналитическое выражения для второго $D^{(2)}$ и четвертого $D^{(4)}$ моментов плотности состояний. Показано, что $D^{(2)} = \Gamma^2$ не зависит от номера уровня Ландау $n, a D^{(4)}$ при больших $n \gg 1$ может быть представлено в виде

$$D^{(4)} \sim (2 + A \frac{\ln n}{n} + \frac{B}{n} + ...)\Gamma^4,$$
 (1)

где $A \approx 0.203, B \approx 0.676$. В разделе 2.5 предложена модель равномерно делокализованных уровней Ландау, в рамках которой считается, что коэффициенты разложения $C_{n\alpha k}$ точных волновых функций по базисным, $|\Psi_{n\alpha}\rangle = \sum_k C_{n\alpha k} |nk\rangle$, являются случайными, некоррелированными величинами. Показано, что такая модель приводит к правильному ответу для степени подмешивания уровней Ландау, но не для плотности состояний на каждом из уровней Ландау.

Раздел 2.6 посвящен вопросу о влиянии самосогласованного электростатического потенциала $\Phi(z)$ в квантовых ямах с несколькими заполненными уровнями размерного квантования на структуру уровней Ландау. Результаты расчетов энергии носителей от магнитного поля представлены на рис. 1 для поперечной и наклонной ориентаций магнитного поля на примере прямоугольной квантовой ямы GaAs шириной 200Å. Как хорошо видно из рис. 1(а), в определенной области магнитных полей *B* и концентраций носителей n_s уровни Ландау, относящиеся к разным подзонам размерного квантования, могут быть вырожденны-

Рис. 1: Спектр электронных состояний вблизи точки пересечения первого возбужденного уровня Ландау, относящегося к основной подзоне размерного квантования, и основного уровня Ландау, относящегося к первой возбужденной подзоне размерного квантования, для различных концентраций носителей. (a) – поперечное магнитное поле, $\alpha = 0^{\circ}$, (b) – наклонное магнитное поле, $\alpha = 2^{\circ}$.

ми и иметь отрицательный наклон, который может быть вычислен аналитически для прямоугольной и параболической квантовых ям,

$$\frac{dE_{20}}{d\hbar\omega_c} = \frac{dE_{11}}{d\hbar\omega_c} = -0.5.$$
(2)

Многочастичное состояние, отвечающее режиму вырожденных уровней Ландау, является энергетически выгодным благодаря перераспределению заряда между двумя уровнями размерного квантования и соответствующему уменьшению кулоновской энергии. При этом расстояние между последовательными уровнями Ландау, принадлежащими одному уровню размерного квантования, остается равным $\hbar\omega_c$, в согласии с теоремой Кона [7]. Как видно из рис. 1(b), наклон магнитного поля относительно оси роста приводит к открытию энергетической щели между ранее вырожденными уровнями, при этом величина щели остается постоянной в тех же областях концентрации/магнитного поля.

<u>Третья глава</u> диссертации посвящена целочисленному квантовому эффекту Холла в резком и плавном хаотическом потенциале. В разделе 3.1 сформулирована модель, в рамках которой проводится расчет компонент тензора проводимости двумерного электронного газа в сильных магнитных полях, дан вывод формул линейного отклика с учетом специфики систем конечных размеров. В частности, для расчета диагональной компоненты σ_{xx} удобно использовать следующее выражение:

$$\sigma_{xx} = \pi e^2 \hbar S D^2(E_F) \langle |v_x|^2 \rangle, \tag{3}$$

где $D(E_F)$ – плотность состояний на уровне Ферми, $\langle |v_x|^2 \rangle$ – усредненный по поверхности Ферми квадрат матричного элемента оператора скорости, отличный от нуля в меру подмешивания уровней Ландау, т.е. параметра $\Gamma/\hbar\omega_c$. В разделе 3.2 изучено влияние асимметричности хаотического потенциала на вид квантово-холловских кривых на примере отдельных примесей с гауссовским потенциалом $V(\mathbf{r}) = V_0 \exp(-r^2/d^2)$. В зависимости от соотношения между числом притягивающих ($V_0 < 0$) и отталкивающих (V₀ > 0) примесей факторы заполнения, соответствующие переходам между последовательными плато целочисленного квантового эффекта Холла, смещаются в левую или правую сторону относительно полуцелых значений, характерных для симметричного потенциала. Как показывает анализ имеющихся в литературе экспериментальных данных, существенное (до 30-40%) отличие критических факторов заполнения от полуцелых значений действительно имеет место в реальных структурах. Кроме того, асимметричность хаотического потенциала негативно сказывается на качестве квантово-холловских кривых, наиболее четкая картина целочисленного квантового эффекта Холла получена в расчетах для симметричного плавного потенциала (бралось $d = 2a_H$). В разделе 3.3 выполнен анализ влияния конечных размеров образца на точность квантования холловской проводимости σ_{xy} . Хорошо известно, что строгое доказательство квантования σ_{xy} опирается на усреднение результата по всевозможным (периодическим, антипериодическим и т.д.) граничным условиям [8]. В области достаточно низких температур проводимость образцов малых ("мезоскопических") размеров является уникальной характеристикой образца, отражающей распределение имеющихся в структуре примесей и дефектов [9], а зна-

Рис. 2: Зависимости продольной и холловской проводимости от фактора заполнения ν для (a) – плавного, $\lambda = 4a_H$, (b) – резкого, $\lambda = 0.25a_H$, хаотического потенциала.

чит соответствующего усреднения не происходит. Данные численных расчетов по отклонению σ_{xy} на плато от квантованного значения хорошо аппроксимируются следующей формулой:

$$\frac{\delta\sigma_{xy}}{\sigma_{xy}} \approx \frac{V}{\hbar\omega_c} \left(\frac{a_H^2}{S}\right)^b,\tag{4}$$

где $b \approx 0.7$. В случае образцов больших (макроскопических) соответствующая поправка оказывается ничтожной, что согласуется с экспериментально наблюдаемой точность квантования, в то время как для образцов с размерами порядка 10^{-4} ст $\delta\sigma_{xy}$ может составлять $10^{-3} - 10^{-2}$. Подобные отклонения наблюдались экспериментально в работе [10].

В разделе 3.4 изучено влияние формы хаотического потенциала на зависимости продольной и холловской проводимостей от фактора заполнения. На рис. 2 представлены результаты расчетов для (a) – плавного, $\lambda = 4a_H$ и (b) – резкого, $\lambda = 0.25a_H$, хаотического потенциалов. В случае плавного хаотического потенциала все 4 показанных на рис. 2(a)

Рис. 3: Зависимость величины первого пика $\sigma_{xx}^{(0)}$ от отношения корреляционной длины хаотического потенциала λ к магнитной длине a_H .

плато холловской проводимости σ_{xy} ярко выражены, имеют практически максимальную ширину. Пиковые величины продольной проводимости $\sigma_{xx}^{(n)}$ не зависят от номера уровня Ландау n, составляя около $0.35e^2/h$ при $\lambda = 4a_H$ и уменьшаясь с ростом λ . Слабая зависимость пиков продольной проводимости от номера уровня Ландау и величины пиков находятся в хорошем согласии с экспериментальными данными. В случае резкого хаотического потенциала лишь первое плато холловской проводимости σ_{xy} на рис. 2(b) является ярко выраженным, ширина же высших плато быстро уменьшается с ростом номера уровня Ландау n, что свидетельствует о сильном подавлении локализации на возбужденных уровнях Ландау $n \ge 1$, также в хорошем согласии с экспериментом.

Раздел 3.5 посвящен пиковым величинам продольной проводимости для резкого и плавного хаотических потенциалов. В случае плавного хаотического потенциала имеются два вклада в пиковые величины σ_{xx} , один из которых происходит из подмешивания вышележащего уровня Ландау и пропорционален n + 1, а другой - нижележащего и пропорционален n, в результате частичного сокращения двух вкладов результат оказывается не зависящим от n. Кроме того, поскольку подмешивание уровней Ландау происходит в меру характерных волновых векторов q, присутствующих в фурье-образе хаотического потенциала, результат

Рис. 4: Зависимость величины первого пика $\sigma_{xx}^{(0)}$ в пределе резкого хаотического потенциала от обратного размера образца 1/L. Пунктирная кривая соответствует зависимости $\sigma_{xx}^{(0)}(L) = \sigma_{xx}^{(0)}(\infty) - \alpha L^{-y}$, где $\sigma_{xx}^{(0)}(\infty) = 0.55e^2/h$, y = 0.5.

оказывается также обратно пропорциональным корреляционной длине хаотического потенциала $\lambda,$

$$\sigma_{xx}^{(n)} \propto \text{const} \cdot \lambda^{-2}.$$
 (5)

Независимость $\sigma_{xx}^{(n)}$ от номера уровня Ландау и убывание с ростом λ находятся в согласии с численными данными, представленными на рис. 2(а) и рис. 3. В случае резкого хаотического потенциала анализ пиков σ_{xx} требует нетривиальных предположений о структуре уровней Ландау. В частности, применение описанной в разделе 2.5 модели равномерно делокализованных уровней Ландау для расчета матричного элемента оператора скорости в формуле (3) и "полукруглой" плотности состояний [6] приводит к ответу

$$\sigma_{xx}^{(n)} = \frac{2n+1}{\pi} \frac{e^2}{h},$$
 (6)

что дает для первого пика (n = 0) значение $\sigma_{xx}^{(0)} = 1/\pi \approx 0.32e^2/h$, существенно меньшее экспериментально наблюдаемого (~ $0.5e^2/h$). Подстановка в формулу (3) точного выражения для максимума плотности состояний на основном уровне Ландау [11] приводит к значению $\sigma_{xx}^{(0)} \approx 0.41e^2/h$. Экстраполяции численных данных к бесконечному размеру образца $L \to \infty$ дает $\sigma_{xx}^{(0)} = (0.55 \pm 0.03)e^2/h$ (см. рис. 4). Таким образом, усредненный квадрат матричного элемента оператора скорости в центре основного уровня Ландау оказывается больше найденного в модели равномерно делокализованных уровней Ландау, $\langle |v_x|^2 \rangle_{exact}^{(0)} \approx 1.35 \langle |v_x|^2 \rangle_{deloc}^{(0)}$, что компенсирует обращение $\langle |v_x|^2 \rangle$ в нуль (локализацию) на хвостах уровней Ландау. Для первого возбужденного уровня Ландау численный расчет дает значение $\sigma_{xx}^{(1)} = (1.08 \pm 0.04) e^2/h$, также существенно превосходящее $0.96e^2/h$, рассчитанное по формуле (6).

В четвертой главе изучены особенности циклотронного резонанса в двумерном электронном газе в поперечном и наклонном магнитных полях. Раздел 4.1 посвящен спектру носителей заряда в одиночных и двойных квантовых ямах, помещенных в наклонное магнитное поле. Полное разделение переменных в такой задаче возможно лишь в специальном случае параболического потенциала конфайнмента, в случае прямоугольных квантовых ям продольная компонента магнитного поля обычно трактуется по теории возмущений либо применяются численные методы. Однако для описания основного состояния, представляющего главный интерес в сильных магнитных полях, возможно использование вариационной волновой функции

$$\Psi_0(y,z) = \left(\frac{a}{\pi}\right)^{1/4} \exp\left(-\frac{a(y-bz)^2}{2}\right) \exp\left(-\frac{cz^2}{2}\right) \cos\left(\frac{\pi z}{2}\right).$$
 (7)

Вариационные параметры $a, b = \tan \varphi$ и c имеют наглядный физический смысл – они описывают изменение эффективной магнитной длины, наклон циклотронной траектории относительно плоскости квантовой ямы и сжатие волновой функции вдоль оси квантовой ямы, характерное для случая продольного магнитного поля. Наиболее простая форма ответа может быть получена, если из трех вариационных параметров оставить только b,

$$E_0 = \frac{\hbar^2 \pi^2}{2m^* l^2} + \frac{1}{2} \hbar \omega_c \cos \alpha \left(1 + \frac{\beta^2 \sin^2 \alpha}{2 \cos \alpha (\beta_0 + \beta \cos \alpha)} \right),\tag{8}$$

где $\beta = eBl^2/(4\hbar c), l$ – ширина квантовой ямы, $\beta_0 = 3\pi^2/[2(\pi^2-6)] \approx 3.8$. В случае двойной квантовой ямы со слабопроницаемым барьером главный эффект наклонного магнитного поля сводится к сдвигу состояний в

Рис. 5: Спектры циклотронного резонанса в гетероструктуре InAs/GaSb в (a) поперечном магнитном поле; (b) наклонном магнитном поле.

каждой из ям на расстояние $l \tan(\alpha)/2$ вдоль проекции наклонного магнитного поля на плоскость квантовой ямы (здесь l – ширина каждой из ям). В результате зависимость энергетического расщепления между нижними уровнями от угла наклона α имеет вид:

$$\frac{\Delta}{\Delta_0} \simeq \exp\left[-\frac{\beta \sin^2 \alpha}{\cos \alpha (1 + \beta \cos \alpha / \beta_0)^2}\right],\tag{9}$$

где Δ_0 – расщепление в нулевом магнитном поле.

В разделе 4.2 изучено влияние наклона магнитного поля на циклотронный резонанс в разъединенных гетероструктурах II типа InAs/GaSb. Экспериментальные данные по циклотронному резонансу, приведенные на рис. 5, показывают, что расщепление линии циклотронного резонанса, имеющее место в поперечных магнитных полях, исчезает при повороте магнитного поля на угол $\alpha \approx 60^{\circ}$. Причиной расщепления линии служит подмешивание электронных состояний из квантовой ямы InAs и дырочных состояний из слоя GaSb на гетерогранице. Расчеты величины расщепления, проведенные в рамках восьмизонной модели Кейна, находятся в хорошем согласии с экспериментальными данными.

Рис. 6: Форма линии циклотронного резонанса (а) и совместной плотности состояний нижних уровней Ландау (b) для хаотических потенциалов с разным отношением корреляционной длины λ к магнитной длине a_H при фиксированной амплитуде хаотического потенциала $V = \sqrt{\langle V_{imp}^2(\mathbf{r}) \rangle}.$

Поскольку экспериментально наблюдаемая величина расщепления составляет 1-2 meV, т.е. много меньше энергий электронных и дырочных состояний самих по себе, гетерограница InAs/GaSb играет роль слабопроницаемого барьера, и для оценки влияния наклона магнитного поля может быть использована формула (9). В результате $\Delta/\Delta_0 \approx 0.3$, т.е. наклон магнитного поля на 60° приводит к трехкратному уменьшению величины расщепления, которое экспериментально не детектируется.

Раздел 4.3 посвящен вопросу о влиянии вида хаотического потенциала примесей и дефектов на форму и ширину линии циклотронного резонанса в области наиболее низких температур (в режиме целочисленного квантового эффекта Холла). В наиболее простом приближении можно пренебречь корреляциями в структуре соседних уровней Ландау, оптические переходы между которыми и определяют форму линии и воспользоваться для расчета усредненного квадрата матричного элемента моделью равномерно делокализованных уровней Ландау, описанной в разделе 2.5. В этом приближении коэффициент поглощения определяется сверткой плотностей состояний уровней Ландау с номерами n и n+1,

$$\alpha \propto \operatorname{Re} \sigma_{xx}(\omega) \propto \frac{1}{\hbar\omega} \int_{E_F-\hbar\omega}^{E_F} D_n(E) D_{n+1}(E+\hbar\omega) dE.$$
 (10)

Сравнение результатов численных расчетов формы линии циклотронного резонанса с последовательным учетом локализации носителей и по формуле (10) представлено на рис. 6 для хаотических потенциалов с различным отношением корреляционной длины к магнитной длине λ/a_H . Как видно из сравнения рис. 6(a) и рис. 6(b), соотношение (10), отождествляющее ширину линии циклотронного резонанса и ширину уровней Ландау, приближенно выполняется лишь для случая резкого хаотического потенциала, $\lambda \ll a_H$. При увеличении λ совместная плотность состояний несколько уширяется, в то время как ширина линии циклотронного резонанса быстро убывает, при $\lambda = a_H$ ширины спектров отличаются уже более чем в три раза. Причиной резкого уменьшения ширины линии циклотронного резонанса с ростом параметра λ/a_H служит квазиклассический характер локализации в случае плавного хаотического потенциала, при этом разрешены оптические переходы лишь между состояниями, разность энергий которых мало отличается от пиклотронной по сравнению с шириной уровней Ландау. Таким образом, вид хаотического потенциала примесей и дефектов существенно сказывается не только на качестве плато целочисленного квантового эффекта Холла и пиковых величинах продольной проводимости, но и на форме и ширине линии циклотронного резонанса.

В <u>Заключении</u> обобщены основные результаты работы:

 Аналитически и численно изучен спектр носителей заряда и структура двумерных электронных состояний в сильном магнитном поле в рамках модели невзаимодействующих носителей, находящихся в хаотическом потенциале примесей и дефектов, амплитуда которого меньше циклотронной энергии. Предложен подход к вычислению плотности состояний, основанный на методе моментов.

2. Предложена модель равномерно делокализованных уровней Ландау, в рамках которой коэффициенты разложения волновых функций, отвечающих движению в магнитном поле и хаотическом потенциале, по базисным волновым функциям считаются случайными величинами, некоррелированными с конкретной реализацией хаотического потенциала. Показано, что в рамках такой модели получается правильный ответ для степени подмешивания уровней Ландау, но не для плотности состояний.

3. Изучено влияние самосогласованного электростатического потенциала на спектр двумерных электронных состояний в сильном магнитном поле при условии заполнения более чем одной подзоны размерного квантования. Показано, что в случае строго поперечной ориентации имеются диапазоны концентраций/магнитных полей, в которых реализуется вырождение двух или более уровней Ландау, относящихся к разным подзонам размерного квантования. Наклон магнитного поля относительно оси квантовой ямы приводит к возникновению энергетической щели между этими уровнями, однако величина щели остается практически постоянной в том же диапазоне параметров.

4. Изучено влияние асимметричности хаотического потенциала на квантово-холловские кривые. Показано, что асимметрия хаотического потенциала приводит к двум эффектам: уменьшению ширины плато целочисленного квантового эффекта Холла и сдвигу факторов заполнения, соответствующих переходам между соседними плато, в сторону больших или меньших целых значений в зависимости от притягивающего или отталкивающего характера потенциала превалирующих примесей.

5. Показано, что вид хаотического потенциала примесей оказывает существенное влияние на зависимости компонент тензора проводимости от фактора заполнения. В случае плавного хаотического потенциала плато целочисленного квантового эффекта Холла ярко выражены, а их ширина практически не зависит от номера плато. Пиковые величины продольной проводимости в этом случае также не зависят от номера уровня Ландау n, уменьшаясь с ростом корреляционной длины потенциала λ .

6. Уменьшение корреляционной длины хаотического потенциала λ приводит к сужению квантово-холловских плато вследствие ухудшения условий локализации. В случае резкого хаотического потенциала ярко выраженными остаются лишь несколько первых плато, а пиковые величины продольной проводимости приобретают приближенно линейную зависимость от номера уровня Ландау n. Величина первого пика, соответствующего n = 0, составляет $0.55e^2/h$, второго пика, соответствующего n = 1, равна $1.08e^2/h$.

7. Показано, что отличие рассчитанного пикового значения $\sigma_{xx}^{(0)} \approx 0.55e^2/h$ от предсказываемого в рамках самосогласованного борновского приближения значения $0.32e^2/h$ связано с двумя факторами – поправкой к квадрату плотности состояний, составляющей 28%, и поправкой к усредненному квадрату матричного элемента оператора скорости, составляющей 35%.

8. Изучен спектр электронных состояний в одиночной и двойной прямоугольных квантовых ямах в наклонном магнитном поле. Предложена наглядная вариационная волновая функция, с высокой точностью описывающая энергию основного состояния. Получена простая формула для оценки степени подавления расщепления симметричного и антисимметричного состояний в двойных квантовых ямах наклонным магнитным полем.

9. Показано, что наклонное магнитное поле подавляет экспериментально наблюдаемое в разъединенных гетероструктурах II типа InAs/GaSb расщепление линии циклотронного резонанса, связанное с подмешиванием электронных и дырочных состояний.

10. Изучен циклотронный резонанс в условиях целочисленного квантового эффекта Холла. Показано, что вид хаотического потенциала примесей и дефектов существенно влияет на ширину и форму линии циклотронного резонанса.

19

Основные результаты диссертационной работы изложены в следующих публикациях:

- [A1] А.А. Грешнов, Э.Н. Колесникова, Г.Г. Зегря. Пиковые величины продольной проводимости в режиме целочисленного квантового эффекта Холла для резкого и плавного хаотических потенциалов // ЖЭТФ 134, 577–586 (2008).
- [A2] A.A. Greshnov, G.G. Zegrya. Theory of σ_{xx} peaks in the IQHE regime with correlated disorder potential // Physica E 40, 1185–1188 (2008).
- [A3] А.А. Грешнов, Г.Г. Зегря. Целочисленный квантовый эффект Холла в коррелированном хаотическом потенциале // ФТП 41, 1347– 1352 (2007).
- [A4] А.А. Грешнов, Э.Н. Колесникова, Г.Г. Зегря. Точность квантования холловской проводимости в образце конечных размеров: степенной закон // ФТП 40, 93–97 (2006).
- [A5] А.А. Грешнов, Г.Г. Зегря, Ю.Б. Васильев, С.Д. Сучалкин, Б.Ю. Мельцер, С.В. Иванов, П.С. Копьев. Циклотронный резонанс в гетероструктуре InAs/GaSb в наклонном магнитном поле // Письма ЖЭТФ 76, 258–262 (2002).
- [A6] A.A. Greshnov, E.N. Kolesnikova, G.G. Zegrya. Spectrum of carriers and optical properties of 2d heterostructures in tilted magnetic field // Int. J. Nanosci. 2, 401–404 (2003).
- [A7] А.А. Грешнов, Г.Г. Зегря. Эффекты самосогласованного электростатического потенциала в квантовых ямах с несколькими уровнями размерного квантования в сильных магнитным полях // ФТП 42, 994–997 (2008).

Список литературы

 Shik A. Quantum Wells: Physics and Electronics of Two-dimensional Systems. — World Scientific, 1997.

- [2] Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. — М. Наука, 1990.
- [3] Landau Level Spectroscopy / Ed. by G. Landwehr, E. I. Rashba. North-Holland, 1990.

- [6] Ando T., Uemura Y. Theory of quantum transport in a twodimensional electron system under magnetic fields. I. Characteristics of level broadening and transport under strong fields // J. Phys. Soc. Jpn. - 1974. - Vol. 36. - P. 959.
- [7] Kohn W. Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas // Phys. Rev. - 1961. - Vol. 123. - P. 1242.
- [8] Niu Q., Thouless D. J., Wu Y.-S. Quantized Hall conductance as a topological invariant // Phys. Rev. B. - 1985. - Vol. 31. - P. 3372.
- [9] Imry Y. Introduction to Mesoscopic Physics. Oxford University Press, 1997.
- [11] Wegner F. Exact density of states for lowest Landau level in white noise potential superfield representation for interacting systems // Z. Phys. B. - 1983. - Vol. 51. - P. 279.