Малевская Александра Вячеславовна

Модификация оптических и резистивных свойств каскадных A3B5 фотоэлектрических преобразователей и AlGaAs/GaAs светоизлучающих диодов

Специальность:

1.3.11 - физика полупроводников

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Санкт-Петербург

Работа выполнена в Федеральном государственном бюджетном учреждении науки Физикотехническом институте им. А.Ф. Иоффе Российской академии наук (г. Санкт-Петербург) 194021, СПб, ул. Политехническая 26.

Научный

руководитель:

Шварц Максим Зиновьевич, кандидат физико-математических наук, ФГБУН Физико-технический институт им. А.Ф. Иоффе Российской академии наук (г. Санкт-Петербург), ведущий научный сотрудник, заведующий лабораторией.

Официальные оппоненты:

Гудовских Александр Сергеевич, доктор технических наук, Федеральное государственное бюджетное учреждение высшего образования и науки «Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук» (г. Санкт-Петербург, 194021, ул. Хлопина, д.8, корп. 3, лит. А), ведущий научный сотрудник, лаб. возобновляемых источников энергии.

Шмидт Наталия Михайловна, доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук (г. Санкт-Петербург, 194021, ул. Политехническая, д. 26), ведущий научный сотрудник, лаб. интегральной оптики на гетероструктурах.

Ведущая организация: Акционерное общество «Научно-исследовательский институт полупроводниковых приборов» (г. Томск, ул. Красноармейская, д. 99а).

Защита состоится $\frac{(19)}{(19)}$ июня $\frac{(10)}{(10)}$ г. в $\frac{(11)}{(10)}$ часов $\frac{(10)}{(10)}$ минут на заседании диссертационного совета $\frac{(10)}{(10)}$ при ФГБУН Физико-техническом институте им. А.Ф. Иоффе Российской академии наук по адресу: $\frac{(10)}{(10)}$ СПб, ул. Политехническая $\frac{(10)}{(10)}$ СПБ, ул. Политехнич

C	диссертацией	МОЖНО	ознакомиться	В	библиотеке	ФГБУН	Физико-технического				
института им. А.Ф. Иоффе Российской академии наук и на сайте www.ioffe.ru.											

Автореферат разослан ______ 2025 года

Ученый секретарь диссертационного совета 34.01.02 доктор физико-математических наук:

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Полупроводниковая энергетика на основе квантоворазмерных гетероструктур успешно развивается в настоящее время. Появляются новые задачи, такие как реализация эффективной передачи энергии в космосе и в атмосфере, повышение эффективности преобразования мощных оптических сигналов, в том числе лазерного излучения (ЛИ) и концентрированного солнечного излучения (СИ) в электроэнергию [1-3]. Мощные светоизлучающие диоды (СИД) инфракрасного (ИК) диапазона необходимы в различных устройствах, например, в пультах дистанционного управления, для подсветки в камерах видеонаблюдения, в охранных системах [4]. При этом повышаются требования к фотоэлектрическим параметрам приборов: эффективности, мощности, сроку эксплуатации.

Основными проблемами, препятствующими увеличению эффективности преобразования концентрированного солнечного и мощного лазерного излучения в электроэнергию, остаются оптические, омические и рекомбинационные потери. Решение проблем осуществляется совершенствованием как технологии квантоворазмерных гетероструктур, так и постростовой технологии, обеспечивающей сохранение свойств материалов при создании новых приборных конструкций с встраиваемыми оптическими отражателями и контактными системами, при исследовании методов травления структур и пр. К началу выполнения данной работы в наименьшей степени изучены возможности модификации фотоэлектрических, оптических и резистивных свойств гетероструктур на этапе постростовой технологии для решения актуальных задач повышения эффективности и надежности преобразователей энергии концентрированного солнечного и мощного лазерного излучения и ИК СИД.

Известно, что для преобразования концентрированного СИ перспективными являются трех каскадные фотоэлектрические преобразователи (ФЭП) на основе GaInP/GaInAs/Ge гетероструктур [5,6]. Однако, для таких ФЭП при значительном увеличении кратности концентрирования преобразуемого СИ регистрируется существенное падение их энерговыработки (КПД) из-за роста омических потерь. Поиск и применение новых контактных систем, обеспечивающих снижение удельного и последовательного сопротивления прибора, остается под пристальным вниманием разработчиков ФЭП.

При изготовлении ИК СИД диапазона длин волн 850-940 нм на основе AlGaAs/GaAs гетероструктур, выращиваемых на поглощающих излучение GaAs подложках, основной проблемой является вывод из кристалла излучения, генерируемого в активной области [7]. Модификация световыводящей поверхности ИК СИД, исследование и разработка систем

многослойных комбинированных отражателей должны способствовать существенному повышению внешней квантовой эффективности и оптической мощности приборов.

Таким образом, разработка и формирование научно-обоснованного комплекса взаимосвязанных методов обработки гетероструктур с модификацией их оптических и резистивных свойств для получения эффективных каскадных A3B5 фотоэлектрических преобразователей и AlGaAs/GaAs светоизлучающих диодов является актуальной научной и практической задачей.

Цели и задачи работы

Целью данной диссертационной работы является разработка постростовой технологии, объединяющей комплекс взаимосвязанных научно-обоснованных методов обработки и модификации A3B5 гетероструктур различных типов (каскадные GaInP/GaInAs/Ge, AlGaAs/GaAs и GaSb) с созданием на их основе фотоэлектрических преобразователей солнечного и лазерного излучения с уменьшенными омическими, оптическими и рекомбинационными потерями и AlGaAs/GaAs ИК СИД с увеличенной эффективностью вывода излучения из кристаллов.

Исследованные в работе различные типы приборов объединены едиными задачами в области постростовой технологии:

- расчет конфигурации шин фронтального омического контакта, обеспечивающей снижение оптических и омических потерь при вводе излучения в ФЭП;
- разработка методов формирования контактных шин на основе Ag/Ni/Au трапециевидного сечения согласно рассчитанной конфигурации;
- изучение омических потерь в новых контактных NiCr/Ag/Au + Ag/Ni/Au системах к полупроводниковым материалам GaAs, GaSb и Ge *p*-типа проводимости и разработка на их основе низкоомных контактов к приборным структурам;
- исследование рекомбинационных потерь при формировании мез приборных структур и разработка комбинированных методов их травления, снижающих рекомбинационные потери носителей заряда;
- исследование профиля *p-n* перехода, формируемого двухстадийной диффузией Zn в подложку GaSb, обеспечивающего оптимальное соотношение оптических и омических потерь в фотоэлектрических преобразователях мощного лазерного излучения;
- разработка конструкций и расчет оптических свойств многослойных комбинированных отражателей и исследование методов их встраивания в ФЭП ЛИ и ИК СИД с сохранением свойств базовых нано- и квантоворазмерных гетероструктур;

- изучение модификации оптических и приборных характеристик ФЭП ЛИ (800-860 нм) и ИК (850-940 нм) СИД, создаваемых методом переноса AlGaAs/GaAs гетероструктуры на подложку-носитель с одновременным встраиванием многослойных комбинированных отражателей первичного и рекомбинационного (люминесцентного) излучений.

Научная новизна и практическая значимость работы

Научная новизна проведенных исследований:

- предложены новые методики постростовой обработки GaInP/GaInAs/Ge гетероструктур, обеспечивающие при создании каскадных ФЭП СИ снижение омических и оптических потерь, подавление поверхностной рекомбинации на периферии кристаллов более чем на 2 порядка;
- предложена и исследована новая контактная система к полупроводниковым материалам GaAs и GaSb p-типа проводимости на основе слоев NiCr/Ag/Au с низким контактным сопротивлением $\sim 10^{-6}$ Ом·см²;
- предложена и исследована новая конструкция многослойного комбинированного отражателя, обеспечивающего отражение более 99% распространяющегося в структурах ФЭП ЛИ и ИК СИД излучения. Отражатель включает широкозонный слой $Al_{0.9}Ga_{0.1}As$ (300 нм), слой диэлектрика SiO_2 (300 нм), адгезионный слой NiCr (0.5-1 нм), отражающий слой Ag (150-200 нм), барьерные слои Ti (50 нм) + Pt (50 нм).

Практическая ценность работы заключается в:

- разработке омических NiCr/Ag/Au+Ag/Ni/Au контактов с низким удельным сопротивлением, высокой электрической проводимостью, хорошей адгезией к поверхностным слоям фото и свето- преобразующих структур и низкой степенью диффузии в материалы полупроводников;
- освоении технологии формирования омического контакта трапециевидного сечения, повышающего эффективность ввода излучения в ФЭП за счет использования эффекта зеркального отражения в направлении фотоприемной поверхности прибора;
- разработке комбинированных методов травления при формировании мезы GaInP/GaInAs/Ge гетероструктуры, обеспечивающих подавление поверхностной рекомбинации на периферии кристаллов;
- разработке многослойного комбинированного отражателя, обеспечивающего отражение более 99% излучения, и технологии его встраивания в конструкции ФЭП и СИД при переносе гетероструктуры на подложку-носитель с использованием интерметаллического соединения Au-In.

В результате проведенных исследований созданы высокоэффективные каскадные GaInP/GaInAs/Ge ФЭП СИ, мощные AlGaAs/GaAs (800-860 нм) и GaSb (1300-1700 нм) ФЭП ЛИ и AlGaAs/GaAs ИК СИД (850-940 нм).

Основные положения, выносимые на защиту:

- 1. Контактные шины трапециевидного сечения с зеркальными боковыми гранями, полученные электрохимическим осаждением Ag на массив планарных контактов, обеспечивают повышение эффективности ввода концентрированного излучения в фотоэлектрический преобразователь за счет переотражения на активную поверхность лучей, падающих на шины, нивелируя эффект затенения в области контакта, при одновременном снижении резистивных потерь.
- 2. Плавный профиль периферийных меза-поверхностей GaInP/GaInAs/Ge структур, полученный комбинацией методов реактивного ионно-плазменного и химического травления, уменьшает количество приповерхностных безызлучательных центров рекомбинации, снижая тем самым скорость поверхностной рекомбинации более чем на 2 порядка, и создает условия для формирования сплошных диэлектрических покрытий, подавляющих деградационные процессы.
- 3. Контактная система NiCr/Ag/Au + Ag/Ni/Au с малым последовательным сопротивлением, имеющая низкую степень диффузионного обмена атомами с полупроводником (глубина проникновения не более 15 нм), предотвращает шунтирование *p-n* перехода, сформированного методом двухстадийной диффузии цинка, расположенного на малой глубине от поверхности в GaSb микроразмерных фотоэлектрических преобразователях.
- 4. Комбинированный Al_{0.9}Ga_{0.1}As//SiO₂/NiCr/Ag/Ti/Pt тыльный отражатель, объединяющий эпитаксиальный слой, напыленные диэлектрические и металлические слои, снижает до 1% потери ИК-излучения, распространяющегося в AlGaAs/GaAs гетероструктуре в сторону поглощающей подложки, дополнительно блокируя диффузию атомов интерметаллического соединения Au-In при формировании контакта с подложкойносителем.

Апробация работы

Результаты работы опубликованы в реферируемых журналах и докладывались на различных конференциях: «ФизикА. СПб» (Санкт-Петербург, 2024), «Физико-химические проблемы возобновляемой энергетики» (Санкт-Петербург, Российская Федерация, 2021), «15th International Conference on Concentrator Photovoltaic Systems, CPV-15» (Fes, Morocco, 2019), «20-я Всероссийская молодежная конференция по физике полупроводников и

наноструктур, опто- и наноэлектронике» (Санкт-Петербург, 2018), «ФизикА. СПб» (Санкт-Петербург, 2018), «17-я Всероссийская молодежная конференция по физике полупроводников и наноструктур, опто- и наноэлектронике» (Санкт-Петербург, 2015), «10th International Conference on Concentrating Photovoltaics, CPV-10» (Albuquerque, NM, USA, 2014), «The 29th European Photovoltaic Solar Energy Conference and Exhibition» (Amsterdam, The Netherlands, 2014).

<u>Публикации.</u> По результатам исследований, составляющих содержание диссертации, опубликовано 26 печатных работ, 4 патента РФ. Список работ размещен в конце автореферата.

Структура и объем диссертации. Диссертация состоит из введения, шести глав, заключения и списка литературы. Общий объем диссертации составляет 171 страниц, включая 70 рисунков и 10 таблиц. Список цитируемой литературы включает 95 наименований.

Содержание работы

Во введении обоснована актуальность проводимых исследований, сформулирована цель, научная новизна и практическая значимость работы, перечислены основные научные положения, выносимые на защиту.

Глава 1 посвящена историческому обзору развития ФЭП СИ и ЛИ и СИД. Рассмотрен принцип действия приборов и их основные фотоэлектрические параметры: спектральные зависимости внешней и внутренней квантовой эффективности (выхода) ФЭП и СИД, спектр люминесценции СИД, вольт-амперная характеристика (ВАХ) и КПД. Приведен обзор по технологии формирования приборов: диффузии из газовой фазы, жидкофазной, газофазной и молекулярно-пучковой эпитаксии. Рассмотрены методы постростовой обработки структур: фотолитографии, осаждение металлических и диэлектрических покрытий, химическое, ионно-лучевое и реактивное ионно-плазменное травление (РИПТ) [8].

Литературный обзор показал, что основные работы по тематике ФЭП связаны с разработкой приборов, обладающих высокой эффективностью при преобразовании ЛИ малой плотности мощности [9,10], что ведет к необходимости проведения дополнительных исследований, направленных на снижение омических, оптических и рекомбинационных потерь [А1]. Работы по ИК СИД, направленные на исследования оптических свойств структур [11], показали необходимость разработки более эффективных комбинированных отражателей, обеспечивающих снижение оптических потерь и увеличение внешней квантовой эффективности и оптической мощности приборов.

 Γ лавы 2 — 6 посвящены изложению оригинальных результатов, полученных в диссертационной работе.

Глава 2 описывает методы получения GaInP/GaInAs/Ge, AlGaAs/GaAs и GaSb структур, приборов на их основе, конструкцию и методы исследования ФЭП СИ и ЛИ и ИК СИД.

Представлено обоснование выбора состава и практическая реализация GaInP/GaInAs/Ge гетероструктуры каскадного ФЭП СИ, выращенной методом МОС-гидридной эпитаксии на германиевой подложке p-типа проводимости. Ga $_{0.52}$ In $_{0.48}$ P, изопериодический с Ga $_{0.99}$ In $_{0.01}$ As, используется в качестве материала верхнего широкозонного субэлемента ($E_g = 1.88$ эВ), преобразующего коротковолновую часть солнечного спектра (до 650 нм). GaInAs ($E_g = 1.4$ эВ) преобразует излучение в диапазоне длин волн 650-900 нм, узкозонный Ge элемент ($E_g = 0.66$ эВ) преобразует длинноволновую часть спектра (900-1800 нм). Таким образом, данная конструкция ФЭП обеспечивает высокоэффективное преобразование широкого спектра СИ [A2, A3].

Рассмотрено влияния глубины залегания p-n перехода на характеристики ФЭП ЛИ (1300-1700 нм) на основе GaSb структуры. Формирование p-n перехода осуществлялось методом локальной двухстадийной диффузии Zn через маску диэлектрика в подложку n-GaSb. Формирование p-n перехода на малой глубине от поверхности в GaSb обеспечивает максимальную спектральную чувствительность, а заглубление p-n перехода под областью омических контактов ведет к снижению омических потерь, препятствует шунтированию p-n перехода и обеспечивает снижение токов утечки [A4].

Приведены варианты AlGaAs/GaAs "прямых" и "обратных" (рост слоев производится в обратной, относительно "прямой" структуры, последовательности) гетероструктур для ФЭП ЛИ (800-860 нм) [А1] и ИК (850-940 нм) СИД [А5]. После переноса "обратной" (инвертированной) гетероструктуры на подложку-носитель отделение ростовой подложки производится по стоп-слою или жертвенному слою. Для снижения оптических потерь излучения, распространяющегося в сторону поглощающей ИК излучение подложки-носителя, разработаны конструкции приборов с многослойными комбинированными отражателями, встраиваемыми между активной областью гетероструктуры и подложкой. Такие многослойные комбинации включают брэгговский отражатель, широкозонный слой Al_{0.9}Ga_{0.1}As, слой диэлектрика SiO₂, адгезионный слой NiCr, отражающий слой Ag, барьерные слои Ti + Pt [A6].

Приведены методы анализа исследуемых гетероструктур и приборов, разработанных на их основе, с использованием сканирующей (растровой) электронной

микроскопии, рамановского рассеяния света, фото- и электролюминесценции, метода Холла.

Глава 3 включает исследования по модификации свойств GaInP/GaInAs/Ge гетероструктур, направленных на снижение омических, оптических и рекомбинационных потерь при изготовлении каскадных ФЭП СИ, предназначенных для преобразования сильно концентрированного солнечного излучения (более 300 крат) [А7, А8]. В этих условиях плотности фототока превышают 10 А/см², что приводит в известных конструкциях ФЭП к увеличению омических потерь при протекании фототока от области генерации фотоносителей к токосборным контактам. Снижение омических потерь при повышенных рабочих токах возможно при уменьшении расстояния между контактными шинами, что, однако, приводит к увеличению оптических потерь на ввод излучения в ФЭП. Для снижения омических и оптических потерь выполнен расчет конфигурации контактных шин трапециевидного сечения с зеркальными боковыми гранями ("пирамидальные" шины) (рис. 1, а) [А9]. Излучение, поступающее на область контактных "пирамидальных" шин, отражается от зеркальных боковых граней на активную поверхность ФЭП, нивелируя эффект затенения в области контакта, что ведет к снижению оптических потерь. Конфигурация "пирамидальных" контактных шин определяется следующими соотношениями:

$$W_1 = (0.05 \div 0.1) \ l$$
 2 мкм $\leq W_2 \leq 0.3W_1$ $\alpha = 45^{\circ} + arctg \frac{h}{l} + arctg \frac{D}{2F}$,

где W_1 и W_2 — длина ребра нижнего и верхнего основания усеченных "пирамид", l — шаг расположения контактных шин, α — угол между боковыми гранями усеченных "пирамид" и основанием, D — размер апертуры концентратора, F — фокусное расстояние концентратора.

Условие $\alpha - 45^{\circ} > arctg \, \frac{h}{l}$ обеспечивает отражение лучей, поступающих на область контактных шин перпендикулярно поверхности фотоэлемента, к фоточувствительной области. Оптимальные величины соотношения $\frac{h}{l} = 0,075 - 0,15\,$ дают величину данного ограничения $\alpha > 49-53^{\circ}$. Условие $\alpha - 45^{\circ} < acrctg \, \frac{D}{2F}\,$ обеспечивает отражение лучей, собираемых концентратором с размером апертуры D и фокусным расстоянием F. Большее

же значение угла $\alpha - 45^0 > acrctg$ $\frac{D}{2F}$ приводит к увеличению доли лучей попадающих на верхнее основание с диной ребра W_2 , т.к. при этом увеличивается соотношение W_2/W_1 .

Оптимальное соотношение $\frac{D}{2F}$ для концентраторов — например, линз Френеля составляет 0.25, соответственно $\arctan 0.25 = 14^\circ$. Таким образом, угол α , соответствующий оптимальным значениям соотношений $\frac{h}{l}$ и $\frac{D}{2F}$, находится в диапазоне $49^0 < \alpha < 59^\circ$ (рис. 1, b). Пример расчета конфигурации контакта: l = 80 мкм, $W_l = 8$ мкм, отношение $\frac{W_l}{l} = 0.1$, $W_2 = 2$ мкм, h = 6 мкм, отношение $\frac{h}{l} = 0.075$, а угол $\alpha > 49^\circ$.

Формирование "пирамидальных" контактных шин обеспечивает оптимальное введение оптической мощности в ФЭП и позволяет снизить оптические потери до 2% (в 2-4 раза) при одновременном снижении резистивных потерь, что является особенно существенным при преобразовании сильно концентрированного солнечного излучения.

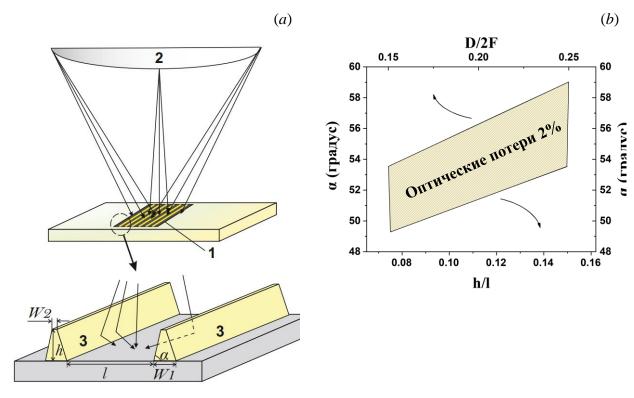


Рис. 1. Схематическое изображение конструкции $\Phi \ni \Pi$ (1) с концентратором солнечного излучения (2) и контактными шинами (3) (*a*). Расчет конфигурации контакта для оптимального введения оптической мощности (*b*).

Для формирования контактных шин согласно рассчитанной конфигурации проведена разработка технологии создания контактов путем напыления тонких слоев контактных материалов [A10-A12] и последующего электрохимического осаждения золота

или серебра [A13-A15]. Исследования показали, что при осаждении золота из цианистого электролита происходит разрушение маски фоторезиста и искажение профиля боковых граней контактных шин. Формирование "пирамидальных" шин заданной конфигурации осуществлено при наращивании серебра из железосинеродистого электролита через маску фоторезиста с обратным профилем наклона боковых граней маски (рис. 2, *a*).

Выполнен анализ фотоэлектрических характеристик ФЭП СИ на основе гетероструктуры GaInP/GaInAs/Ge, получен прирост внешнего квантового выхода фотоответа субэлементов на 2-3% (рис. 2, b) и обеспечена возможность преобразования сильно концентрированного СИ (до 3000 крат) без существенного падения эффективности фотопреобразователя. Использование разработанных контактных систем актуально также для снижения омических и оптических потерь в ФЭП ЛИ.

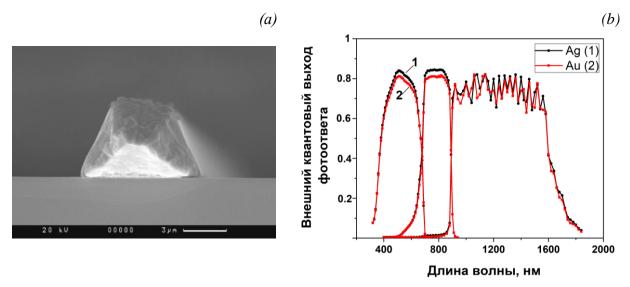


Рис. 2. Вид скола контактной шины Ag/Ni/Au в виде усеченной "пирамиды" (a), полученный на сканирующем электронном микроскопе (СЭМ), и спектральная характеристика каскадного ФЭП (b) с Ag "пирамидальными" шинами и Au планарными шинами.

Предложено решение по подавлению поверхностной рекомбинации по периферии кристаллов ФЭП путем оптимизации методов травления мез GaInP/GaInAs/Ge структур с использованием комбинаций химического, электрохимического [A16, A17] и реактивного ионно-плазменного травления в потоке рабочего газа BCl₃ [A18]. Выяснено, что формирование мез традиционными методами химического травления приводит к разбросу значений темнового тока и избыточным токам поверхностной рекомбинации, из-за селективного травления твердых растворов по периферии кристаллов (рис. 3). Определено, что реактивное ионно-плазменное травление неселективно, обеспечивает формирование плавного профиля периферийных меза-поверхностей и ведет к снижению скорости поверхностной рекомбинации, что выявляется в особенностях прямой ветви ВАХ.

Повышение стабильности свойств поверхности на периферии мез достигнуто при удалении продуктов реактивного ионно-плазменного травления методами химического травления в составах на основе ортофосфорной или серной кислоты с добавлением перекиси водорода. Таким образом, комбинация методов формирования меза-поверхностей GaInP/GaInAs/Ge структур не только уменьшает количество приповерхностных безызлучательных центров рекомбинации, снижая тем самым скорость поверхностной рекомбинации более чем на 2 порядка, но и увеличивает воспроизводимость параметров и их временную стабильность. Также создает условия для формирования сплошных диэлектрических защитных покрытий на основе Si₃N₄ и силикона, подавляющих деградационные процессы при воздействии факторов окружающей среды (температуры, влажности), и обеспечивает увеличение выхода годных приборов до 95% [A19].

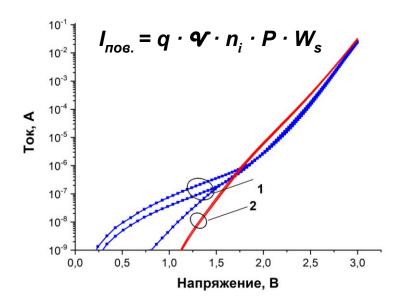


Рис. 3. Темновые ВАХ каскадных ФЭП при прямом смещении после создания мез GaInP/GaInAs/Ge структур методами: 1 – химического и электрохимического травления, 2 – реактивного ионно-плазменного травления с удалением нарушенного слоя методом химического травления. $I_{nos.}$ – поверхностная рекомбинация, q – заряд электрона, V – скорость поверхностной рекомбинации, n_i – собственная концентрация носителей, P – периметр p-n перехода, W_s – ширина области объемного заряда по периферии p-n перехода.

В результате проведенных исследований изготовлены концентраторные каскадные ФЭП СИ на основе гетероструктуры GaInP/GaInAs/Ge с КПД более 36% (AM1.5) при кратности концентрирования 200-500 солнц.

Глава 4 включает результаты исследований и разработок технологии изготовления мощных ФЭП ЛИ в диапазонах длин волн 1300-1700 нм на основе GaSb [A20]. Проведена

разработка конструкции микроразмерных ФЭП с фоточувствительной областью от 30 мкм в диаметре для преобразования ЛИ высокой плотности мощности. Размер в 30 мкм определяется минимальным вкладом потерь на сопротивлении растекания для ФЭП без контактов в пределах фоточувствительной области, что, одновременно, отвечает практически нулевым потерям на ввод излучения. Увеличение площади фотоприемной поверхности ведет к росту резистивной составляющей, что требует использования контактной сетки для компенсации, а возникающие при этом оптические потери не позволяют добиваться предельных эффективностей для ФЭП. Таким образом, разработанная конструкция ФЭП с диаметром фоточувствительной области 30 мкм обеспечивает возможность преобразования ЛИ высокой плотности мощности при минимальных омических и оптических потерях.

Увеличение мощности ЛИ, преобразуемого ФЭП, ведет к необходимости проведения исследований различных контактных систем к GaSb n и p-типа проводимости, обеспечивающих снижение омических потерь. Разработана контактная система на основе NiCr/Ag/Au+Ag/Ni/Au, обладающая низким контактным сопротивлением (10^{-6} Oм·см²), улучшенной адгезией к поверхности и имеющая низкую степень диффузионного обмена атомами с полупроводником (глубина проникновения не более 15 нм), что особенно актуально при изготовлении ФЭП с p-n переходом на малой глубине от поверхности полупроводника, т.к. предотвращает его шунтирование и ведет к снижению токов утечки. Выполнен анализ сопротивления растекания (Rs) диффузионного слоя GaSb с использованием методики LTLM (linear transmission line modeling), значение Rs составило 22.2 Ом/квадрат, что свидетельствует о низком уровне резистивных потерь.

Исследовано влияние конструкции микроразмерных ФЭП на основе GaSb с диаметром фоточувствительной области Ø30 мкм и Ø80 мкм на фотоэлектрические характеристики приборов (рис. 4) [A21]. Измерение спектральной фоточувствительности (SR) ФЭП выполнено на тестовых образцах размером 3 мм х 3 мм. В рабочем диапазоне длин волн 1300-1600 нм значения внутренней (SR_{inter}) и внешней (SR_{exter}) фоточувствительности ФЭП практически совпадают и равны 1 А/Вт, что свидетельствует о низких оптических потерях на ввод ЛИ. КПД разработанных приборов составил 38% при плотности фототока до 550 А/см², что существенно превосходит результаты достигнутые ранее (34% эффективности при плотности тока 100 А/см²).

Преобразование высокой плотности мощности ЛИ (до $1.6~{\rm kBt/cm^2}$) с эффективностью >38% свидетельствует о существенном снижении омических потерь в разработанных ФЭП, достигнутого за счет разработанной топологии микроразмерных приборов и использования разработанных контактов с высокой электрической

проводимостью.

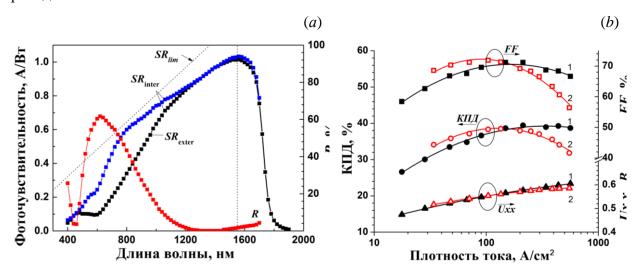


Рис. 4. Спектальная фоточувствительность тестовых образцов (*a*) и эффективность (*КПД*), фактор заполнения BAX (*FF*), напряжение холостого хода (*Uxx*) преобразования ЛИ (1550 нм) (*b*) ФЭП на основе GaSb с диметром фоточувствительной области Ø30 мкм (1) и Ø80 мкм (2).

Глава 5 посвящена исследованиям оптических свойств AlGaAs/GaAs гетероструктур с многослойным комбинированным тыльным отражателем при создании многопроходных ФЭП ЛИ (800-860 нм) и ИК СИД (850-940 нм), получаемых методом переноса тонких слоев AlGaAs/GaAs инвертированной гетероструктуры на подложкуноситель и включающим:

- формирование точечных контактов к гетероструктуре;
- нанесение многослойного комбинированного отражателя;
- монтаж гетероструктуры на подложку-носитель GaAs с использованием интерметаллического соединения Au-In;
 - удаление ростовой подложки GaAs и жертвенного слоя Al_{0.9}Ga_{0.1}As;
- формирование омических контактов, антиотражающего покрытия и разделительной мезы.

Конструкция многослойного отражателя включает полупроводниковые слои, которые формируются непосредственно при эпитаксиальном росте гетероструктуры и включают брэгговский отражатель (БО) на основе 15 пар слоев n-Al $_{0.9}$ Ga $_{0.1}$ As/n-Al $_{0.1}$ Ga $_{0.9}$ As и дополнительный широкозонный слой n-Al $_{0.9}$ Ga $_{0.1}$ As толщиной порядка 300 нм. Брэгговский отражатель отражает более 90% лучей, поступающих под углами, близкими к 90 угл. град. в спектральном диапазоне 820-880 нм в телесном угле (δ) с раскрытием \pm 20 угл. град. Широкозонный слой n-Al $_{0.9}$ Ga $_{0.1}$ As (300 нм) имеет меньшее значение показателя преломления, по сравнению с прилегающим к нему узкозонным слоем структуры Al $_{0.9}$ Ga $_{0.1}$ As (δ 0, и, соответственно, отражает лучи, прошедшие сквозь БО, и

поступающие на слой $Al_{0.9}Ga_{0.1}As$ под углами, при которых происходит полное внутренне отражение ($\beta \sim 60$ угл. град) [A6].

Увеличение эффективности отражателя достигается при формировании на поверхности гетероструктуры дополнительных слоев диэлектрика (SiO_2), адгезионного слоя (NiCr), слоя с высоким коэффициентом отражения (Ag, $R_{Ag} \sim 98\%$), барьерных слоев (Ti+Pt) [A5]. Использование слоя диэлектрика с минимальным коэффициентом преломления: SiO_2 (n = 1.46) ведет к уменьшению угла полного внутреннего отражения (α = 23 угл. град.) и увеличению доли отраженного излучения. Использование барьерных слоев блокирует диффузию атомов интерметаллического соединения Au-In при формировании контакта с подложкой-носителем, тем самым препятствуя деградации оптических свойств отражателя при проведении технологических операций по изготовлению приборов и в ходе их эксплуатации (рис. 5, a). Выполнен расчёт оптических свойств многослойных комбинированных отражателей четырех типов: БО+Al_{0.9}Ga_{0.1}As, NiCr+Ag; SiO₂+NiCr+Ag; $Al_{0.9}Ga_{0.1}As+SiO_2+NiCr+Ag$ (рис. 5, b). Данные расчета по методу матриц Абелеса для ТМ и ТЕ поляризованного света [12] показали потенциальную достижимость значения коэффициента отражения излучения для комбинированного Al_{0.9}Ga_{0.1}As+SiO₂+NiCr+Ag отражателя на уровне ~99.4%. При практической реализации приборных структур для обеспечения электрической проводимости формируется массив точеных контактов, занимающих 2% площади отражателя, что ведет к снижению коэффициента отражения до 98%.

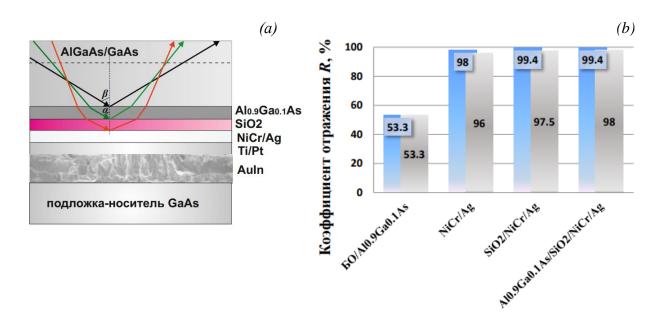


Рис.5. Схема работы комбинированного отражателя (a), оптические свойства отражателей различных конструкций без учета затенения точечными контактами (синий) и с затенением 2% (серый) (b).

Глава 6 включает результаты исследований снижения омических и оптических потерь ФЭП ЛИ (800-860 нм) и ИК (850-940 нм) СИД на основе AlGaAs/GaAs гетероструктуры.

Фотоэлектрические преобразователи лазерного излучения

К началу проведения данной работы эффективность ФЭП более 60% достигнута только при преобразовании ЛИ мощностью порядка $10~\rm BT/cm^2$ [9]. Одной из основных задач исследования является разработка мощных ФЭП ЛИ, обеспечивающих высокоэффективное преобразование большой плотности мощности поступающего излучения $P=100-500~\rm BT/cm^2$. Проведены исследования по снижению омических потерь в AlGaAs/GaAs ФЭП ЛИ. Выполнена разработка топологии приборов с малым диаметром фоточувствительной области (500 мкм) и высокой плотностью контактных шин (от 50 мкм). Использованы разработанные контактные системы на основе NiCr/Ag/Au к GaAs p-типа проводимости и Pd/Ge/Au к GaAs n-типа проводимости, обеспечивающие снижение удельного контактного сопротивления до $(1-3)\cdot10^{-6}~\rm Om\cdot cm^2$, с электрохимическим наращиванием слоев Ag/Ni/Au для увеличения электрической проводимости контактов [A22-A25].

Снижение оптических потерь до 1% достигнуто в ФЭП на основе гетероструктур инвертированного роста с многослойным комбинированным отражателем (рис. 6), за счет возврата в активную область непоглощенного излучения [А1, А26]. Толщина активной области гетероструктуры инвертированного роста снижена практически в 2 раза за счет преобразования излучения, как непосредственно вводимого в структуру, так и отраженного от комбинированного отражателя. Уменьшение толщины активной области обеспечивает снижение деградации структуры и увеличение радиационной стойкости ФЭП. Анализ характеристик приборов, изготовленных на основе инвертированной гетероструктуры, показал увеличение значений внешней фоточувствительности, напряжения холостого хода и эффективности приборов при встраивании в конструкцию ФЭП многослойного комбинированного отражателя (рис. 7, a, b). Небольшой спад спектральной фоточувствительности в диапазоне длин волн 840-860 нм обусловлен неполным поглощением излучения при формировании ФЭП на основе инвертированной гетероструктуры без включения отражателя в конструкцию прибора, что может быть нивелировано при оптимизации толщины активной области в ФЭП на основе гетероструктуры прямого роста.

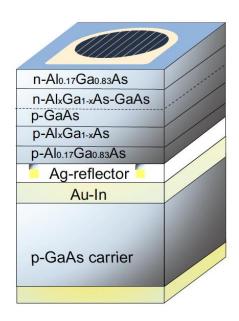


Рис. 6. Схематическое изображение Φ ЭП на основе AlGaAs/GaAs инвертированной гетероструктуры.

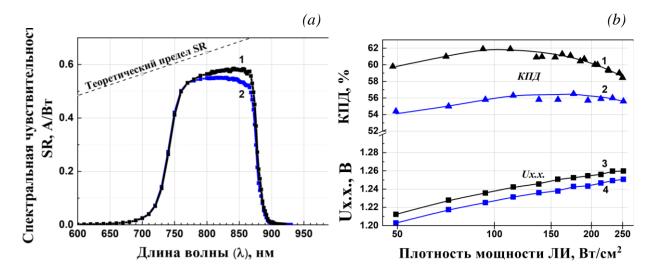


Рис. 7. Спектральная зависимость внешней фоточувствительности (a) и эффективность ($K\Pi \mathcal{I}$) (b) ФЭП ЛИ (λ =850 нм) с шагом шин 125 мкм на основе инвертированной AlGaAs/GaAs структуры. 1, 3 – с отражателем; 2, 4 – без отражателя.

В таблице 1 приведены основные параметры $\Phi \ni \Pi$, изготовленных на основе прямой структуры без отражателя и инвертированной структуры с отражателем. Падение фактора заполнения BAX (*FF*) на 1-3% обусловлено формированием тыльного точеного контакта в приборах на инвертированных структурах и увеличением шага расположения контактных шин. Однако, при этом наблюдается рост значений спектральной чувствительности до 0.585 A/Bт за счет встраивания в конструкцию $\Phi \ni \Pi$ отражателя, что ведет к увеличению эффективности приборов.

Таблица 1. Параметры Φ ЭП на основе прямой структуры без отражателя и инвертированной структуры с отражателем для ЛИ λ =850 нм.

Структура	Шаг контактной сетки, мкм	SR _{ext} , A/BT	FF _{max} ,	Max.Efficiency, % $(E_{LR}, B_T/c_M^2)$	$U_{x.x.}$, B $(E_{LR} = 500 \text{ BT/cm}^2)$
Прямая (без отражателя)	50	0.541	88	59.2 (360)	1.261
Инвертированная	50	0.556	87	60.3 (180)	1.277
(с отражателем)	125	0.585	85	61.9 (100)	1.277

Эффективностью преобразования ЛИ различной плотности мощности можно управлять изменяя соотношение омических и оптических потерь. Разработка новой конструкции ФЭП с оптимизированной контактной системой (с шагом шин 50 и 125 мкм) и с многослойным комбинированным отражателем позволило достигнуть рекордных значений КПД = 62% (λ = 850 нм) при плотности мощности 100 Вт/см² и КПД > 56% при плотности мощности до 550 Вт/см² (рис. 8) [А1]. Это является максимальным достигнутым значением для ФЭП ЛИ в указанном диапазоне освещенностей.

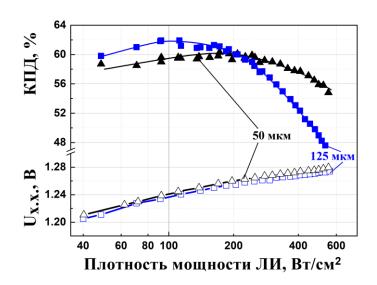


Рис. 8. Зависимость эффективности ($K\Pi Z$) и напряжения холостого хода (Uxx) ФЭП с шагом шин 50 и 125 мкм на основе AlGaAs/GaAs структуры с отражателем от плотности мощности лазерного излучения (λ =850 нм).

Инфракрасные светоизлучающие диоды

Приведены исследования по увеличению эффективности вывода излучения из кристаллов ИК (850-940 нм) СИД при разработки новой конструкции приборов (рис. 9) [A27-A29]. Увеличение эффективности вывода излучения из кристалла достигается при формировании многослойного комбинированного отражателя, отражающего

генерированное в активной области излучение и распространяющееся в сторону поглощающей GaAs подложки [A6, A30].

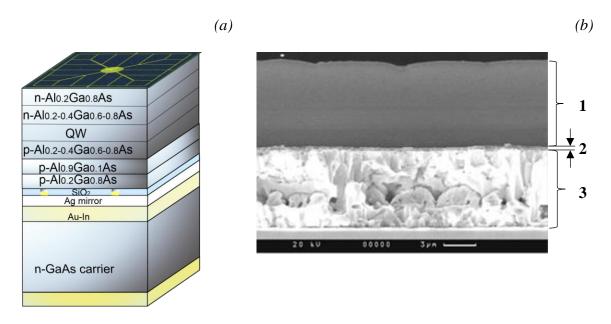


Рис. 9. Схематическое изображение (a) и изображение СЭМ (b) ИК (850 нм) СИД с встроенным комбинированным отражателем. 1- гетероструктура AlGaAs/GaAs, 2 - комбинированный отражатель, 3 - соединение Au-In.

Проведен анализ влияния многослойного комбинированного отражателя на параметры ИК СИД (850 нм). Выполнены измерения внешней квантовой эффективности (рис. 10, a) и оптической мощности (рис. 10, b) ИК СИД с различными конструкциями отражателей: $1 - \text{БO/Al}_{0.9}\text{Ga}_{0.1}\text{As}$ (300 нм); $2 - \text{Al}_{0.9}\text{Ga}_{0.1}\text{As}$ (300 нм) / SiO_2 (300 нм) / NiCr (0.5 нм) / Ag (200 нм); $3 - \text{Al}_{0.9}\text{Ga}_{0.1}\text{As}$ (300 нм) / SiO_2 (300 нм) / NiCr (0.5 нм) / Ag (200 нм) / Pt (50 нм). В результате проведенного исследования установлено, что увеличение эффективности отражателя приводит к росту оптической мощности многопроходных приборов в несколько раз за счет многократного переотражения генерированного в активной области излучения.

Максимальная величина внешней квантовой эффективности 48% при плотности тока $10\text{-}20~\text{A/cm}^2$ и оптическая мощность 600~mBt при токе 1~A достигнута в ИК (850 нм) СИД на основе структуры с многослойным комбинированным отражателем $\text{Al}_{0.9}\text{Ga}_{0.1}\text{As/SiO}_2/\text{NiCr/Ag/Ti/Pt}$, что в 5-6 раз превосходит значения для структур с отражателем $\text{EO/Al}_{0.9}\text{Ga}_{0.1}\text{As}$.

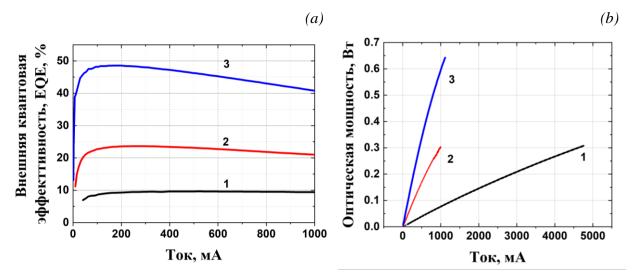


Рис. 10. Токовые зависимости внешней квантовой эффективности (EQE) (a) и оптической мощности (b) ИК СИД (850 нм) с отражателями: 1 — $EO/Al_{0.9}Ga_{0.1}As$; 2 — $EO/Al_{0.9}Ga_{0.1}As/SiO_2/NiCr/Ag$; 3 — $EO/Al_{0.9}Ga_{0.1}As/SiO_2/NiCr/Ag$

В заключении приведены основные результаты исследований:

- 1. Выполнен расчет конфигурации контактных шин трапециевидного сечения с зеркальными боковыми гранями, отражающими излучение к фоточувствительной области ФЭП. Разработана технология формировании контактных шин согласно рассчитанной конфигурации путем электрохимического осаждения слоев серебра. Для ФЭП СИ на основе GaInP/GaInAs/Ge структуры получен прирост внешнего квантового выхода фотоответа субэлементов на 2-3% И обеспечена возможность преобразования сильно концентрированного СИ (до 3000 крат) без существенного падения эффективности фотопреобразователя.
- 2. Разработана новая контактная система на основе слоев NiCr/Ag/Au с удельным контактным сопротивлением $(1-2)\cdot 10^{-6}$ Ом \cdot см 2 к слоям GaAs и GaSb p-типа проводимости и $(2-4)\cdot 10^{-5}$ Ом \cdot см 2 к p-Ge, обладающая низкой степенью диффузии в материал полупроводника (менее 15 нм) и хорошей адгезией.
- 3. Показано, что создание меза-структуры каскадных ФЭП методами реактивного ионно-плазменного и химического травления обеспечивает подавление поверхностной рекомбинации на 2 порядка, а пассивация мезы диэлектрическими защитными покрытиями на основе Si_3N_4 и силикона уменьшает деградацию параметров при воздействии факторов окружающей среды (температуры, влажности) и увеличивает выход годных приборов до 95%.
- 4. Для GaSb ФЭП ЛИ со структурой, получаемой двухстадийной диффузией цинка в подложку, снижено удельное контактное сопротивление при использовании новой контактной системы на основе NiCr/Ag/Au и увеличена электрическая проводимость

- контакта при электрохимическом наращивании слоев Ag/Ni/Au. При использовании разработанной контактной системы и за счет оптимизации конструкции ФЭП ЛИ впервые превышен порог в 38% по эффективности преобразования излучения высокой плотности мощности (до 1.6 кВт/см²) в приборах с диаметром фоточувствительной области Ø30 мкм.
- 5. Разработан новый многослойный комбинированный тыльный отражатель, предотвращающий потери, связанные с поглощением излучения в подложке и способствующий его возврату в активную область, для ФЭП ЛИ и ИК СИД на основе AlGaAs/GaAs гетероструктур, включающий широкозонный слой Al_{0.9}Ga_{0.1}As, слой диэлектрика с минимальным коэффициентом преломления (SiO₂), адгезионный слой (NiCr), металлический слой с высоким коэффициентом отражения (Ag), барьерные слои (Ti+Pt). Расчетное значение коэффициента отражения для ИК излучения (800-940 нм) составило более 99%. Экспериментально подтверждено снижение оптических потерь при сохранении свойств гетероструктур ФЭП ЛИ и ИК СИД.
- 6. Снижены омические и оптические потери при изготовлении мощных ФЭП ЛИ (800-860 нм) на основе AlGaAs/GaAs гетероструктуры с многослойным комбинированным отражателем. Достигнуто рекордное значение КПД > 62% при плотности мощности лазерного излучения ($\lambda = 850$ нм) P = 100 Вт/см², КПД > 56% при высокой плотности мощности P = 550 Вт/см².
- 7. Увеличена эффективность вывода излучения из кристаллов ИК (850-940 нм) СИД на основе AlGaAs/GaAs гетероструктуры с квантовыми ямами и многослойным комбинированным отражателем. Максимальная внешняя квантовая эффективность (*EQE*) ИК СИД (850 нм) составила более 48% при плотности тока 10-20 A/cм², значение оптической мощности превысило 600 мВт при токе 1 А.

Публикации по теме диссертации

- A1. N. A. Kalyuzhnyy, A. V. Malevskaya, S. A. Mintairov, M. A. Mintairov, M. V. Nakhimovich, R. A. Salii, M. Z. Shvarts, V. M. Andreev. Photovoltaic AlGaAs/GaAs devices for conversion of high-power density laser (800–860 nm) radiation // Solar Energy Materials and Solar Cells. 2023. Vol. 262, no 112251.
- А2. А. В. Малевская, Н. Д. Ильинская, Ю. М. Задиранов, А. А. Блохин, Д. А. Малевский, П. В. Покровский. Постростовые технологии каскадных фотоэлектрических преобразователей на основе АЗВ5-гетероструктур // Журнал Технической Физики. 2022. Т. 92, № 1. С. 108–112.
- A3. S. A. Levina, V. M. Emelyanov, A. V. Malevskaya, E. D. Filimonov, M. Z. Shvarts. The external quantum efficiency of multijunction solar cells with built-in 1D photonic crystals // Международная конференция физикА. СПб. Journal of Physics: Conference Series. 2018. Vol. 1135, 1, no 012075.
- A4. V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. S. Potapovich, A. V. Malevskaya, M. V. Nakhimovich, M. Z. Shvarts. GaSb Photovoltaic Cells for Laser Power

- Conversion // 15th International Conference on Concentrator Photovoltaic Systems, CPV 2019. AIP Conference Proceedings. 2019. Vol. 2149, no 050007.
- А5. А. В. Малевская, Н. А. Калюжный, Д. А. Малевский, С. А. Минтаиров, А. М. Надточий, М. В. Нахимович, Ф. Ю. Солдатенков, М. З. Шварц, В. М. Андреев. Инфракрасные (850 нм) светодиоды с множественными квантовыми ямами InGaAs и "тыльным" отражателем // Физика и Техника Полупроводников. − 2021. − Т.55, № 8. − С. 699–703.
- Аб. А. В. Малевская, Н. А. Калюжный. Р. А. Салий, Ф. Ю. Солдатенков, М. В. Нахимович, Д. А. Малевский. Влияние свойств тыльного отражателя на характеристики инфракрасных светоизлучающих диодов на основе AlGaAs/GaAs гетероструктуры // Письма в Журнал Технической Физики. − 2024. − Т. 50, № 18. − С. 22–26.
- A7. S. A. Levina, E. D. Filimonov, A. V. Malevskaya, V. M. Emelyanov, M. A. Mintairov, N. A. Kalyuzhnyy, V. V. Evstropov, M. Z. Shvarts. Light Budget in MJ SC at Temperature Tuning // 15Th International Conference on Concentrator Photovoltaic Systems, CPV 2019. AIP Conference Proceedings. 2019. Vol. 2149, no 080004.
- S. A. E.D. Filimonov, A8. Levina, A. V. Malevskaya, M. Z. Shvarts. Bragg reflectors as light trap in multijunction solar cells. // 20-я Всероссийская. молодежная конференция по физике полупроводников и наноструктур, опто- и наноэлектронике. Journal of Physics: Conference Series. – 2018. - Vol. 1199, 1, no 012033.
- А9. В. М. Андреев, Н. Д. Ильинская, А. В. Малевская, В. Д. Румянцев. Солнечный фотоэлектрический субмодуль // Патент РФ № 2442244. 2012.
- A10. A. V. Malevskaya, F. Yu. Soldatenkov, R. V. Levin, N. A. Kalyuzhnyy, M. Z. Shvarts. Low Temperature Ohmic Contact for High-Power AlGaAs/GaAs Photovoltaic Converters // Vacuum. 2025. Vol. 233, no 114030.
- А11. А. В. Малевская, Ф. Ю. Солдатенков, Р. В. Левин, Н. С. Потапович. Влияние режимов формирования контактной системы Pd/Ge/Au к n-GaAs на ее электрические характеристики // Письма в Журнал Технической Физики. 2023. Т. 49, № 3. С. 15–18.
- А12. Ф. Ю. Солдатенков, А. В. Малевская. Фотоэлектрический преобразователь // Патент РФ № 2756171. -2021.
- A13. A. V. Malevskaya, D. A. Malevski, N. D. Il`inskaya. Effect of bus-bar material and configuration on the efficiency of GaInP/GaAs/Ge solar cells // 17-я Всероссийская. молодежная конференция по физике полупроводников и наноструктур, опто- и наноэлектронике. Journal of Physics: Conference Series. 2016. Vol. 690, 1, no 012039.
- А14. А. В. Малевская, Н. Д. Ильинская, Д. А. Малевский, П. В. Покровский. Электрохимическое осаждение контактных материалов в постростовой технологии фотоэлектрических преобразователей // Физика и Техника Полупроводников. 2022. Т. 56, № 3. С. 376–379.
- А15. А. В. Малевская, Н. Д. Ильинская, Д. А. Малевский, П. В. Покровский. Способ изготовления омических контактов фотоэлектрического преобразователя // Патент РФ № 2756198. 2021.
- А16. А. В. Малевская, Н. Д. Ильинская, В. М. Андреев. Разработка методов жидкостного травления разделительной меза-структуры при создании каскадных солнечных

- элементов // Письма в Журнал Технической Физики. 2019. Т.45, № 24. С. 14–16.
- A17. V. S. Kalinovsky, E. A. Grebenschikova, P. A. Dmitriev, N. D. Il`inskaya, E. V. Kontrosh, A. V. Malevskaya, A. A. Usikova, V. M. Andreev. Photoelectric characteristics of InGaP/Ga(In)As/Ge solar cells fabricated with a single-stage wet chemical etching separation process // AIP Conference Proceedings. 2014. Vol.1616. P. 326–330.
- А18. А. В. Малевская, Ю. М. Задиранов, Д. А. Малевский, П. В. Покровский, Н. Д. Ильинская, В. М. Андреев. Плазмохимическое и жидкостное травление в постростовой технологии каскадных солнечных элементов на основе гетероструктуры GaInP/GaInAs/Ge // Письма в Журнал Технической Физики. 2021. Т. 47, № 3. С. 14—17.
- А19. А. В. Малевская, Д. А. Малевский, П. В. Покровский, В. М. Андреев. Исследование методов пассивации и защиты каскадных солнечных элементов // Письма в Журнал Технической Физики. 2020. Т.46, № 19. С. 35–37.
- А20. В. П. Хвостиков, С. В. Сорокина, О. А. Хвостикова, А. В. Малевская. Мощный преобразователь узкополосного излучения для длины волны 1550 нм. // Физико-химические проблемы возобновляемой энергетики. Сборник трудов Российской конференции. 2021. С. 106—107.
- А21. В. П. Хвостиков, А. В. Малевская, П. В. Покровский, О. А. Хвостикова, Ф. Ю. Солдатенков, М. В. Нахимович. Микроразмерные GaSb фотоэлектрические преобразователи лазерного излучения высокой плотности // Письма в Журнал Технической Физики. 2025. Т. 51, № 4. С. 50–53.
- А22. В. М. Андреев, В. С. Калиновский, Н. А. Калюжный, Е. В. Контрош, А. В. Малевская, С. А. Минтаиров, М. З. Шварц. Мощный субнаносекундный модуль на основе p—i—n AlGaAs/GaAs-фотодиодов // Письма в Журнал Технической Физики. 2024. Т. 50, № 19. С. 3-6.
- A23. V. P. Khvostikov, A. N. Panchak, O. A. Khvostikova, P. V. Pokrovskiy, A. V. Malevskaya. Optimizing the size of vertical-junction GaAs PV cells with AlGaAs gradient waveguide // IEEE Electron Device Letters. − 2024. − Vol. 45, № 8. − P. 1417–1420.
- A24. V. P. Khvostikov, N. S. Potapovich, N. A. Kalyuzhnyy, S. V. Sorokina, S. A. Mintairov, O. A. Khvostikova, N. Kh. Timoshina, A. A. Usikova, A. V. Malevskaya, N. Yu. Davidyuk, A. S. Vlasov, V. M. Andreev. GaAs Photovoltaic Converters and Arrays for wireless power transmitting systems // Proceedings of the 29 European Photovoltaic Solar Energy Conference and Exhibition. 2014. P. 80–83.
- А25. А. В. Малевская, В. С. Калиновский, Н. Д. Ильинская, Д. А. Малевский, Е. В. Контрош, М. З. Шварц, В. М. Андреев. Влияние структуры омических контактов на характеристики GaAs/AlGaAs фотоэлектрических преобразователей // Журнал Технической Физики. 2018. Т. 88, № 8. С. 1211–1215.
- А26. В. М. Андреев, Н. А. Калюжный, С. А. Минтаиров, Р. А. Салий, А. В. Малевская, Ф. Ю. Солдатенков, А. А. Блохин, С. А. Левина, М. В. Нахимович, М. З. Шварц. Фотоэлектрический преобразователь // Патент РФ № 2805290. 2023.
- А27. А. В. Малевская, Н. А. Калюжный, Д. А. Малевский, А. А. Блохин, М. В. Нахимович, Н. Д. Ильинская. Формирование световыводящей поверхности инфракрасных (850 nm) светоизлучающих диодов // Журнал Технической Физики. 2024. Т. 94, № 6. С. 888–893.
- А28. А. В. Малевская, Н. А. Калюжный, Ф. Ю. Солдатенков, Р. В. Левин, Р. А. Салий, Д. А. Малевский, П. В. Покровский, В. Р. Ларионов, В. М. Андреев. Исследование

- технологии изготовления мощных ИК (850 nm) светодиодов, получаемых методом переноса AlGaAs-GaAs-гетероструктуры на подложку-носитель // Журнал Технической Физики. 2023. Т. 93, № 1. С. 170–174.
- А29. А. В. Малевская, Н. Д. Ильинская, Н. А. Калюжный, Д. А. Малевский, Ю. М. Задиранов, П. В. Покровский, А. А. Блохин, А. В. Андреева. Исследование методов текстурирования светодиодов на основе гетероструктур AlGaAs/GaAs // Физика и Техника Полупроводников. − 2021. − Т. 55, № 11. − С. 1086–1090.
- А30. Р. А. Салий, А. В. Малевская, Д. А. Малевский, С. А. Минтаиров, А. М. Надточий, Н. А. Калюжный. Управление параметрами InGaAs квантовых ям в активной области светодиодов ближнего ИК диапазона (850-940 нм) // Оптика и Спектроскопия. 2024. Т. 132, № 11. С. 1146–1149.

Список литературы

- 1. Handbook on Concentrator Photovoltaic Technology / ed. by C. Algora, I. Rey-Stolle. New York, US: John Wiley & Sons, 2016. P. 59–244, 339–432, 589. 684 p.
- 2. C. Algora, I. Garcia, M. Delgado, R. Pena, C. Vazquez, M. Hinojosa, I. Rey-Stolle. Beaming power: Photovoltaic laser power converters for power-by-light // Joule. − 2022. − Vol. 6, №. 2. − P. 340-368
- 3. Y. Zheng, G. Zhang, Zh. Huan, Y. Zhang, G. Yuan, Q. Li, G. Ding, Zh. Lv, W. Ni, Y. Shao, X. Liu, J. Zu. Wireless laser power transmission: Recent progress and future challenges // Space Solar Power and Wireless Transmission. − 2024. − Vol. 1, №1. − P. 17–26.
- 4. E.F. Shubert. Light-emitting diodes // New York, US: Cambridge University Press, 2003. 313 p.
- 5. M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao. Solar cell efficiency tables (Vershion 64) // Progress in Photovoltaics: Research and Applications. 2024. Vol. 32, № 7. 17 c.
- 6. Zh. I. Alferov, V. M. Andreev, M. Z. Shvarts. Chapter 8. III–V Solar Cells and Concentrator Arrays // High-Efficient Low-Cost Photovoltaics. Recent Developments. Second Edition Springer Series in Optical Sciences. 2020. Vol. 140. P. 133–174.
- 7. L. Han, M. Zhao, X. Tang, W. Huo, Zh. Deng. Luminescence study in InGaAs/AlGaAs multi-quantum-well light emitting diode with p-n junction engineering // Journal of Applied Physics. 2020. Vol. 127, no 085706.
- 8. Microlithography. Science and Technology / 2rd. ed., ed. by Bruce W. Smith, Kazuaki Suzuki. Boca Raton: CRC Press, 2007. 864 c.
- 9. H. Helmers, E. Lopez, O. Höhn, D. Lackner, J. Schön, M. Schauerte, M. Schachtner, F. Dimroth, and A.W. Bett. 68.9% Efficient GaAs-Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance // Physic Status Solidi. Rapid Research Letters. 2021. Vol. 15, no 2100113.
- 10. В.П. Хвостиков, С.В. Сорокина, Ф.Ю. Солдатенков, Н.Х. Тимошина. Фотоэлектрический преобразователь лазерного излучения для длин волн $\lambda \approx 1550$ нм на основе GaSb // Физика и Техника Полупроводников. − 2015. − Т. 49, № 8. − С. 1104–1107.
- 11. H.-J. Lee, I.-K. Jang, D.-K. Kim, Y.-J. Cha, S.W. Cho. Enhanced Light Output Power on Near-Infrared Light-Emitting Diodes with TITO/Ag Multilayer Reflector // Micromachines. 2022. Vol. 13, 5, no 695.
- 12. В. М. Емельянов. Математическое моделирование и исследование характеристик многопереходных A3B5 фотоэлектрических преобразователей солнечного излучения: диссертация на канд. физ.-мат. наук: 01.04.10 / Спб. 2011. 214 с.