POSTER SESSIONS
|
|
1. Electronic Properties of nanotubes
|
P1.1 |
Arkhipov A.V., Mishin M.V., Kuzmichev
A.V.
Interpretation of dynamic and dc field-emission
characteristics of nanocarbons in terms of
two-stage emission model |
P1.2 |
Arkhipov A.V., Bondarenko V.B.,
Gabdullin P.G.
On possible structure of field-induced electron
emission centers of nano-porous carbon |
P1.3 |
Arkhipov A.V., Gabdullin P.G.
"Fine structure" of emission I-V characteristics
of nano-dispersed films |
P1.4 |
Arkhipov A.V.
Facilitating effect of non-stationary electric
field on electron emission from nanocarbon
films |
P1.5 |
Belolipetskii A.A., Lebedev N.G.
Research of dependence of SWCNTs dipole moment
on its length |
P1.6 |
Belskii M.D., Bocharov G.S., Eletskii
A.V.
Electrical field amplification in electron
field emitters on the basis of carbon nanotubes
|
P1.7 |
Musatov A.L., Izrael'yants K.R.,
Ormont A.B., Chirkova E.G., Kukovitskii E.F.
High current density planar field electron
emitters with carbon nanotubes |
P1.8 |
Kharissova O.V., Osorio M., Garza M., Kharisov
B.I.
Study of bismuth nanoparticles and nanotubes
obtained by microwave heating |
P1.9 |
Kharissova O.V., Ortiz Mendez U., Kharisov
B.I.
Fe-filled carbon nanotubes produced by microwave
heating of ferrocene |
P1.10 |
Kondrashov V.A., Nevolin V.K.
The pulse discharge method for carbon nanotube
ring production |
P1.11 |
Krinichnaya E.P., Moravsky A.P.,
Loutfy R.O., Ivanova O.P., Zhuravleva T.S.,
Kutner W.
Studies on electrochemical properties of aligned
multi-walled carbon nanotube electrodes |
P1.12 |
Kurenya A.G., Kudashov A.G., Okotrub
A.V., Gusel'nikov A.V., Bulusheva L.G.
Influence of CVD parameters on growth of aligned
carbon nanotube arrays |
P1.13 |
Lavskaya Yu.V., Bulusheva L.G.,
Okotrub A.V., Yudanov N.F., Fonseca A.
Comparative X-ray investigation of fluorinated
single- and few-wall carbon nanotubes |
P1.14 |
Lyapkosova O.S., Lebedev N.G.
Piezoresistance effect in carbon nanotubes
|
P1.15 |
Lyapkosova O.S., Lebedev N.G.
Influence of point defects on band structure
of carbon nanotubes within the framework of
the periodical Anderson's model |
P1.16 |
Mikhalchan A.A., Lysenko V.A.
Lysenko A.A. The effect of different treatments
on electrical resistivity of carbon nanotubes
|
P1.17 |
Bogdanova D.A., Moliver S.S.
Spin-triplet molecule inside carbon nanotube
|
P1.18 |
Pak A.V., Lebedev N.G.
The influence of adsorbed molecular hydrogen
on band structure of carbon nanotubes |
P1.19 |
Pinchuk T.M., Dmytrenko O.P., Kulish
M.P., Grabovskyy Yu.E., Prylutskyy Yu.I.,
Bilyy M.M., Matsuy L.Yu., Zabolotnyy M.A.
Physically-mechanical properties of poly(vinyl)
chloride with multi-walled cardon nanotubes
|
P1.20 |
Popov A., Lebedev N.
Modeling of electromagnetic pulse propagation
through the system of carbon nanotubes |
P1.21 |
Pozdnyakov O.F., Popov E.O., Latypov
Z.Z., Pozdnyakov A.O.
Field electron emission from "polymer-carbon
nanotubes" composites as revealed by mass
spectrometry" |
P1.22 |
Prikhodko A., Konkov O., Terukov
E., Filippov A.
Nanosecond S-type electrical instability in
carbon nanotube-polymer matrix |
P1.23 |
Shamina E.N., Lebedev N.G.
The semi-empirical research of chiral absorption
effect of atomic and molecular particles on
the carbon nanotubes surface |
P1.24 |
Nevolin V.K., Simunin M.M.
Concept of single-walled carbon nanotube formation
|
P1.25 |
Tikhomirova G.V., Volkova Ya.Yu.,
Babushkin A.N.
Conductivity of fullerite C60 and
single-wall carbon nanotubes at pressures
20-50 GPa |
P1.26 |
Tomilin O.B., Muryumin E.E., Rodionova
E.V., Syrkina N.P.
A prismatic modification of single-walled
carbon nanotubes by fluorine and boron atoms
|
P1.27 |
Tomilin O.B., Muryumin E.E., Rodionova
E.V., Syrkina N.P.
A ring conjugation in a prismatic modifications
of single-walled carbon nanotubes |
P1.28 |
Tomilin O.B., Muryumin E.E., Devyataykina
S.P., Syrkina N.P.
An isolated one-dimensional conjugated subsystem
in a modified single-walled carbon nanotubes
|
P1.29 |
Belonenko M.B., Lebedev N.G., Yanyushkina
N.N.
Few cycle optical pulses in the carbon nanotubes
with periodical impurities |
P1.30 |
Zagainova V.S., Makarova T.L., Bulusheva
L.G., Okotrub A.V., Kurenya A.G.
Magnetic properties of carbon nanotubes with
low content of Fe |
|
|
|
2. Synthesis and Properties of Graphene
and Nanographite
|
p2.1 |
Gusyatnikova P.P., Artyukhov V.I.,
Chernozatonskii L.A.
Electronic and magnetic properties of zigzag
graphene nanoribbon-based 1D superlattices
|
p2.2 |
Bets K., Yakobson B.I.
Dynamics of spontaneous deformations of graphene
nanoribbons |
p2.3 |
Chernozatonskii L.A., Sorokin P.B.,
Graphene biribbons: the features of electronic
properties. |
p2.4 |
Chernozatonskii L.A., Sheka E.F.,
Sorokin P.B., Artukh A.A.
New cabon materials: modeling nanotube- graphene
nanoribbons composites |
p2.5 |
Sheka E.F., Chernozatonskii L.A.
Chemical reactivity and magnetism of graphene
|
p2.6 |
Davydov S.Yu.
Simple estimations of the elastic characteristics
of graphene and silicene |
p2.7 |
Dunaev A.V., Belmesov A.A., Archangelsky
I.V., Avdeev V.V.
Formation of a highly porous graphene-based
material with Pt nanoparticles by intercalation
of [Pt(NH3)4]2+
into graphite oxide |
p2.8 |
Kosakovskii G.G., Simunin M.M.
Influence of substrate's material on the structure
graphene films synthesized by thermal-electric
method |
p2.9 |
Kvashnin A.G., Sorokin P.B., Kvashnin
D.G.
The theoretical study of mechanical properties
of graphene membranes |
p2.10 |
Latyshev Yu.I., Orlov A.P., Latyshev
A.Yu., Vignolles D.,
Interlayer tunnelling spectroscopy of Dirac
fermions in graphite |
p2.11 |
Volgaev A.S., Osipov V.Yu.
Optical transmission spectroscopy for characterization
of absorption due to surface plasmon resonance
in multi-shell nanographites |
p2.12 |
Rut'kov E.V., Gall N.R.
Graphene layers on Rh(111). |
|
|
|
3.Synthesis and Properties of Carbon Onions
and Nanodiamonds
|
P3.1 |
Dolmatov V.Yu.
Elemental composition and crystallography
of detonation S(DND) |
P3.2 |
Burkat G.K., Dolmatov V.Yu., Osawa
E., Orlova E.A.
Investigation of properties of chrome-nanodiamond
coatings based on detonation nanodiamonds
(DND) of different producers |
P3.3 |
Gavrilov A.S., Voznyakovsky A.P.
Detonation nanocarbons. From explosion to
composition |
P3.4 |
Ilyin I.V., Soltamova A.A., Baranov
P.G., Vul' A.Ya., Kidalov S.V., Shakhov F.M.,
Mamin G.V., Orlinskii S.B., Salakhov M.Kh.
Detection and identification of nitrogen centers
in nanodiamonds: EPR studies |
P3.5 |
Karbushev V., Vasil'ev G., Konstantinov
I., Semakov A., Kulichikhin V.
Morphology and properties of polymer-nanodiamond
composites |
P3.6 |
Korobov M.V., Efremova M.M., Avramenko
N.V., Ivanova N.I., Rozhkova N.N., Osawa E.
Do primary particles of detonation nanodiamond
form a secondary structure? |
P3.7 |
Osipov V.Yu., Volgaev A.S., Alexenskiy
A.E., Shames A.I., Vul'A.Ya.
Infrared absorption studies of surface functional
groups of chemically modified nanodiamonds
|
P3.8 |
Pecheva E., Pramatarova L., Tanaka
Y., Sakamoto H., Doi H., Tsutsumi Y., Vul'
A., Hanawa T.
Apatite-nanodiamond composite as a functional
coating of stainless steel implants |
P3.9 |
Kidalov S.V., Shakhov F.M., Vul'
A.Ya., Ozerin A.N., Kurkin T.S.,
Smirnov A.N. Properties of high pressure sintered
nanodiamonds and its composites |
P3.10 |
Blaut-Blachev A.N., Bouilov L.L., Zolotarevsky
V.I., Spitsyn B.V.
Highohmic nanocrystalline diamond films |
P3.11 |
Kidalov S.V., Bogomazov I.E., Vul'
A.Ya.
Heat transfer in forced convective flows of
water-based nanofluids with nanocrystalline
diamonds of detonation synthesis |
P3.12 |
Aleksenskiy A.E., Dydeikin A.T.,
Shvidchenko A.V., Vul' A.Ya., Sakseyev D.A.,
Baidakova M.V.
The aggregation of the particles in the purified
detonation nanodiamond |
|
4.Inorganic Fullerenes and Nanotubes
|
P4.1 |
Alshevskiy Yu.L., Blank V.D., Kazennov
N.V., Tatyanin Ye.V.
Vapor phase synthesis of filamentary tungsten
oxides by HFCVD |
P4.2 |
Blank V., Batov D., Kulnitskiy B.,
Polyakov E., Bagramov R.
Annealing and structural modifications of
CNx nanofibers |
P4.3 |
Chernobrovkin A.L., Demishev S.V.,
Glushkov V.V., Goodilin E.A., Grigorieva A.V.,
Ishchenko T.V., Sluchanko N.E., Tretyakov
Yu.D.+, Semeno A.V.
Transport properties of VOx multiwall
nanotubes |
P4.4 |
Sorokin P.B., Avramov P.V., Demin V.A.,
Chernozatonskii L.A.
Beta-phase silicon nanowires: structure and
properties |
P4.5 |
Koroteev V.O., Rogalski I.V., Shubin
U.V., Bulusheva L.G., Okotrub A.V.
Formation of MoS2 and Mo2S3
layers on the surface of thermo expanded graphite
|
P4.6 |
Sorokin P.B., Kvashnin D.G., Kvashnin
A.G.
Theoretical investigation of the elastic properties
of branched silicon nanowires |
P4.7 |
Fokin A.V., Ivanov A., Kumzerov Yu.A.,
Naberezhnov A.A., Petrov A.A., Semkin V.N.,
Vakhrushev S.B.
Origin of (-O-H) stretch mode in the chrysotile
asbestos: neutron scattering and optical absorption
study |
P4.8 |
Sorokin P.B., Chernozatonskii L.A.
The theoretical prediction of new MgB2
nanotubes |
P4.9 |
Sorokin P.B., Vlasenko A.A.
The investigation of growth mechanism of silicon
nanowires |
P4.10 |
Sorokin P.B., Zaitsev A.A.
The theoretical study of electronic structure
of single nanotube of TiB2 |
P4.11 |
Zaporotskova I.V., Perevalova E.V.,
Zaporotskova N.P.
The adsorption properties of baron nanotubes
|
P4.12 |
Zaporotskova I.V., Perevalova E.V.,
Zaporotskov P.A.
Semiempirical investigation of boron nanotubes
and some structure-modification composites
on its base |
|
|
|
5. Synthesis and Chemical Properties of
Fullerene Derivatives
|
P5.1 |
Agafonov S.S., Somenkov V.A., Filippov
A.A.
Structure of intercalates Ñ60 and
Ñ70. |
P5.2 |
Amsharov K.Yu., Simeonov K., Jansen
M.
The principles of reactivity of higher fullerenes
|
P5.3 |
Bulgakov R.G., Ponomareva Yu.G.,
Sabirov D.Sh.
Influence of medium on C60 reactivity
in liquid phase oxidation of hydrocarbons
|
P5.4 |
Bulgakov R.G., Galimov D.I., Kinzyabaeva
Z.S., Sabirov D.Sh.
A new type of chemiluminescence: liquid phase
oxidation of Ñ60H36 fullerene hydride
|
P5.5 |
Chubarova E.V. and Melenevskaja
E.Yu.
Effect of structure of monocyclic aromatic
solvents on the consistency of fullerene C60
solvation shell |
P5.6 |
Lebedeva M.F., Melenevskaja E.Yu., Chubarova
E.V.
Polymer chain degradation during deformation
of polystyrene-fullerene C60 composite
films |
P5.7 |
Churilov G.N., Osipova I.V., Marchenko
S.A., Gulyaeva U.E.
Influence of sonic and magnetic fields on
fullerene and nanotube formation in carbon-helium
plasma of high frequency at atmospheric pressure
|
P5.8 |
Domratcheva-LvovaL.G., Domrachev
G.A., Domracheva E.G., Huipe Nava E., Spivak
A.E.
The new molecular structures based on exo-
and endo-fullerenes |
P5.9 |
Ghanbari B. , Tangeysh B.
The effect of ligand variation on catalytic
property of CoSALEN in hydroperoxidation of
Fullerene C60 |
P5.10 |
Ghanbari B., Abadi N.H.
The effect of axial bases in catalytic activity
of CoSALEN in oxidation of C60
|
P5.11 |
Gorina E.A., Titova S.N., Kalakutskaya
L.V., Domrachev G.A., Ketkov S.Y., Obiedkov
A.M., Poddel'sky A.I., Lopatin M.A.
Organofullerenes with hydrocarbyl and trimethylsilyl
groups prepared from lithium and sodium fullerides
|
P5.12 |
Obiedkov A.M., Gorina E.A., Kaverin
B.S., Semenov N.M., Egorov V.A., A.I.Kirillov,
Titova S.N., Domrachev G.A., Lopatina T.I.,
Gusev S.A.
Composite materials obtained on the basis
of multi-wall carbon nanotubes |
|
|
P5.14 |
Gruzinskaya N.I., Silin A.I., Pimenova
A.S., Sidorov L.N., Troyanov S.I.
New fluorocycloalkyl derivatives of [60] and
[70]fullerenes |
P5.15 |
Gubskaya V.P., Fazleeva G.M., Balandina
A.A., Latypov S.K., Gubaidullin A.T., Saifina
A.F., Nuretdinov I.A.
Synthesis, structure and properties of allyl
esters of methanofullerenes |
P5.16 |
Ioutsi V.A., Zadorin A.À., Ovchinnikova
N.S., Yurovskaya M.A.
Application of metal-catalyzed 1, 3-dipolar
cycloaddition reactions for synthesis of substituted
fulleroproline derivatives |
P5.17 |
Yumagulova R.Kh., Medvedeva N.A.,
Kolesov S.V.
Fractionation of fullerene containing copolymers |
P5.18 |
Khamatgalimov A.R., Mukhametshafikova
L.R., Kovalenko V.I.
Electronic structure and stability of C80
fullerene IPR-isomers |
P5.19 |
Jimenez Gomez M.A., Kharissova O.V.,
Kharisov B.I.,
Ortiz Mendez U. Synthesis by Prato reaction
and in situ UV-characterization of several
fulleropyrrolidine derivatives |
P5.20 |
Guerrero-Dib X.E., Ortiz-Mendez U., Ferrer
D., Sepulveda S., Jose-Yacaman M., Kharissova
O.V.
Synthesis and properties of monometallic and
bimetallic silver and gold nanoparticles |
P5.21 |
Khavrel P.A., Gruzinskaya N.I.,
Pimenova A.S., Ioffe I.N., Troyanov S.I.
19F NMR studies and DFT calculations of fluorocycloalkylated
fullerenes C60/70(C2F4)
and C60/70(C2F4)
|
P5.22 |
Lijanova I., Klimova E., Morales
Espinosa E., Martinez-Garcia M.
Fullerene-dendrimers with OPV moieties |
P5.23 |
Sanchez-Montes K.E., Klimova T., Martinez-Garcia
M.
Synthesis of porphiryn dendrimers with fullerene
C60 units in the periphery |
P5.24 |
Konarev D.V., Khasanov S.S., Mukhamadieva
G.R., Lyubovskaya R.N.
Design of molecular and ionic complexes of
fullerene C60 with metal (II) octaethylporphyrins
by using coordination M-N(ligand) and M-C(C60-)
bonds |
|
|
|
POSTER SESSION II
|
|
Synthesis and Chemical Properties of fullerene
Derivatives (continuation)
|
|
|
P5.26 |
Kornienko E.S., Avdoshenko S.M.,
Goryunkov A.A, Ioffe I.N., Khavrel P.A., Kozlov
A.A., Magdesieva T.V., Sidorov L.N., Vorobiev
A.Kh.
Synthesis and investigation of electrochemical
properties of novel fluorine derivatives of
C60 |
|
|
P5.28 |
Kozlov A., Kornienko J., Brotsman
V., Khavrel P., Avdoshenko S., Ioffe I., Goryunkov
A., Vorobiev A.
Unprecedented ring expansion of C60:
difluoromethylene[60]fullerenes and their
hydrides |
P5.29 |
Kvyatkovskii O.E., Zakharova I.B.,
Makarova T.L.
Polymerization of hydrogenated fullerene |
P5.30 |
Lebedev V. T., Grushko Yu.S., Orlova
D.N., Kozlov V.S., V.P., Kolesnik S.G., Shamanin
V.V., Melenevskaya E.Yu.
Aggregation in hydroxylated endohedral fullerene
solutions |
P5.31 |
Lebedev V.T., Vinogradova L.V.,
Torok Gy., Shamanin V.V.
Long-range self-assembly in solutions of star-shaped
polymers with fullerene C60 multifunctional
centers |
P5.32 |
Lopatin D.V., Chirkin E.S.
Structure and electronic properties of fullerene
derivative: quantum chemical calculations
|
P5.33 |
Gerasimov V., Losev G., Matuzenko M.,
Chizhov Yu.V.
Isomers of fullerene C60 |
P5.34 |
Gubskaya V.P., Fazleeva G.M., Sibgatullina
F.G., Berezhnaya L.Sh., Yanilkin V.V., Nastapova
N.V., Gubaidullin A.T., Saifina A.F., Nuretdinov
I.A.
Thiophene derivatives of methanofullerene
and pyrrolidinofullerenes |
P5.35 |
Ovchinnikova N.S., Goryunkov A.A.,
Khavrel P.A., Apenova M.G., Troyanov S.I.,
Yurovskaya M.A.
Functionalization of Cs-C70(CF3)8:
the Bingel reaction |
P5.36 |
Kazachenko V., Mieno T., Razanau I.
Structure of thin fullerene C60
polymer and composite C60-PTFE
and C60-PANi layers |
P5.37 |
Taheri Rizi Z., Ghanbari B., Tangeysh
B.
Chemical evaluation of anti-oxidative property
of the aminofullerene C60 derivative
mixtures |
P5.38 |
Ruchenin V.A., Markin A.V., Smirnova
N.N.
The thermodynamic properties of the derivatives
of Ñ60 fullerene with elementorganic ligands
R12C60 (R= t-Bu, Me3Si)
|
P5.39 |
Sabirov A.R., Stankevich I.V.
DFT modeling of the complexes of osmium with
fullerene C70 |
P5.40 |
Samokhvalov P.S., Skokan E.V., Markov
V.Yu., Samokhvalova N.A., Karnatsevich V.L.
Trifluormethylation of sodium fullerides |
P5.41 |
Samokhvalova N.A., Khavrel P.A.,
Troyanov S.I.
New CF3 derivatives of [60]fullerene
|
P5.42 |
Serov M., Petukhova G., Goryunkov
A., Dobrokhotova Zh.
Substitutional fluorination in liquid phase
- new way to fluorofullerenes |
P5.43 |
Bityuzkaya L.A., Sokolov Yu.V.
Non-linear effects at the non-equilibrium
fullerene aggregation |
P5.44 |
Gal'pern E.G, Stankevich I.V.
Complexes Pdn(C60)m.
Computer modeling of structure and prediction
of electron properties |
|
|
P5.46 |
Troyanov S.I., Tamm N.B.
Derivatization and structure elucidation of
higher fullerenes5 |
P5.47 |
Georgy Fedorov, Paola Barbara, Dmitry
Smirnov3, David Jimenez4, Stephan Roche
Selective [2+1]-cycloaddition of diazomethane
to [60]fullerene assisted by metal complex
catalysts |
P5.48 |
Tuktarov A.R., Akhmetov A.R., Dzhemilev
U.M.
Catalytic [2+1]-cycloaddition of diazoacetates
to [60]fullerene |
P5.49 |
Vinogradova L., Filippov A., Shamanin
V.
Methods of combination and functionalization
of organolithium polymer derivatives of fullerene
in the precise synthesis of regular star-shaped
structures |
P5.50 |
Zverev V.V., Kovalenko V.I., Romanova
I.P., Sinyashin O.G.
The mechanism of interaction of azides with
C60NR |
P5.51 |
Zverev V.V., Kovalenko V.I.
DFT study of cycloaddition of alkyl azides
to C60 and elimination of N2 from
adducts C60N3R |
|
6. Methods of Nanocarbon Characterizations
|
P6.1 |
Basharin A.Y., Dozhdikov V.S., Turchaninov
M.A., Lysenko I.Y., Sobina O.A.
Mechanisms of the carbon crystallization from
liquid and vapour |
P6.2 |
Brykalova X.O., Pavlychev A.A.
Size effects in X-ray absorption and inner-shell
photoemission from molecules encapsulated
in fullerene |
P6.3 |
Brzhezinskaya M.M., Krestinin A.V.,
Zvereva G.I., Kharitonov A.P., Vinogradov
A.S.
Electronic structure of fluorinated single-walled
carbon nanotubes studied by X-ray absorption
and photoelectron spectroscopy |
P6.4 |
Brzhezinskaya M.M., Generalov A.V.,
Vinogradov A.S., Chernysheva M.V., Eliseev
A.A., Kiselev N.A., Lukashin A.V., Krestinin
A.V., Tretyakov Yu.D.
Electronic structure of CuHal@SWCNTs (Hal=I,
Cl, Br) studied by X-ray absorption and photoelectron
spectroscopy |
P6.5 |
Davydov S.N., Gabdullin P.G., Ryumin
M.A.
Apparatus for investigating physical nature
of nanoporous carbon structure field emission
|
P6.6 |
Dymarchuk V.O., Zaulychnyy Ya.V.,
Khyzhun O.Yu., Ogenko V.M., Naboka O.V., Dubrovina
L.V., Volkov S.V.
An X-ray emission spectroscopy study of the
electronic structure of products of toluene
diisocyanate carbonization in an Al2O3
matrix |
P6.7 |
Generalov A.V., Brzhezinskaya M.M.,
Puttner R., Vinogradov A.S., Chernysheva M.V.,
Eliseev A.A., Kiselev N.A., Lukashin A.V.,
Tretyakov Yu.D.
NEXAFS characterization of electronic structure
for CuI@SWCNT nanocomposite |
P6.8 |
Gorshkov K.V., Nevolin V.K., Bobrinetskiy
I.I., Tsarik K.A.
The nanographite 2D-structures investigation
with making use of atomic-force and ion-beam
methods |
P6.9 |
Kiselyova K.S., Devaux X., Tsareva
S.Yu., Zharikov E.V., McRae E.
Morphological features of carbon nanostructures
synthesized by pyrolysis of benzene in the
presence of sulphur |
P6.10 |
Klyushin A.Yu., Brzhezinskaya M.M.,
Generalov A.V., Puttner R. Vinogradov À.S.
Features of resonant F KLL Auger spectra from
fluorinated multi-walled carbon nanotubes
|
P6.11 |
Komarova N.S., Krivenko A.G., Stenina
E.V., Sviridova L.N.
Electrochemical behavior of carbon nanostructures
at camphor and sodium cryptate adsorption
|
P6.12 |
Kosticheva D.M., Voznyakovsky A.P.,
Sazanov Yu.N.
The use of cocarbonization processes for creation
of the porous carbon systems |
P6.13 |
Latypov Z.Z., Golikov G.K., Pozdnyakov
O.F., Gall L.N.
Separating of fullerenes and their compounds
in impulse inhomogeneous electric fields |
P6.14 |
Lebedev A.A., Kotousova I.S., Lavrent'ev
A.A., Lebedev S.P., Makarenko I.V., Petrov
V.N., Smirnov A.N., Titkov A.N.
Investigation of nanocarbon films on SiC surface
formed by sublimation epitaxy in vacuum |
P6.15 |
Milyavskiy V.V., Ten K.A., Borodina
T.I., Basharin A.Yu., Dozhdikov V.S., Lukianchikov
L.A., Pruuel E.R., Tolochko B.P., Zhulanov
V.V.
Shock compressibility of C70 fullerene
via synchrotron radiation technique |
P6.16 |
Lad'yanov V.I., Nikonova R.M., Merzlyakova
M.A., Aksyonova V.V.
Thermal behavior of C60 and C70
fullerenes in various environments |
P6.17 |
Osipova I.V., Lopatin V.A., Vnukova
N.G., Novikov P.V., Churilov G.N.
Emission spectroscopy as the main control
method for carbon nanoparticles synthesis
|
P6.18 |
Papoular R.J., Dmitriev V., Davydov
V.A., Rakhmanina A.V., Agafonov V.
Study of the orthorhombic polymeric phase
of C60 under high-pressure using
X-ray synchrotron radiation |
P6.19 |
Pavlenko O.L., Dmytrenko O.P., Kulish
M.P., Bulavin L.A., Bilyi M.M., Stashchuk
V.S. Grabovskyi Yu.E. Zabolotnyi M.A. Prylutskyi
Yu.I., Scarff P.
Change of C60 fullerites properties
under irradiation with electrons and ions
|
P6.20 |
Zaulychnyy Ya., Solonin Yu., Prilutski
E., Petrovska S.
X-ray spectral investigation of electronic
structure peculiarities in carbon onions,
nanotubes and fullerenes |
P6.21 |
Rols S., Papoular R.J., Davydov
V.A., Rakhmanina A.V., Autret C. Agafonov
V.
Study of C60 peapods after high-pressure-
high- temperature treatment |
P6.22 |
Blagoveshchenskii N.M., Novikov A.N., Rozhkova
N.N., Osawa E.
Diffusion characteristics of water in the
vicinity of single-nano buckydiamond as revealed
by quasielastic neutron scattering |
P6.23
|
Shabanova I.N., Terebova N.S.
Application of the x-ray photoelectron spectroscopy
method for studying the variation of the magnetic
moment of the 3d-metal atoms in nanoforms
|
|
POSTER SESSION III
|
|
7. Carbon Cluster Formation and Phase
Transitions in Nanocarbons
|
P7.1 |
Agafonov S.S., Kokin I.F., Somenkov
V.A.
Mechanoactivation of fullerites |
P7.2 |
Agafonov S.S., Glazkov V.P., Kokin
I.F., Somenkov V.A.
Polyamorphous transition in amorphous fullerenes
|
P7.3 |
Blank V.D., Alshevskiy Yu.L., Kazennov
N.V., Kulnitskiy B.A., Tatyanin Ye.V., Belousov
Yu.A.
Synthesis of long multiwalled carbon nanotube
strands |
P7.4 |
Avdeev M.V., Tropin T.V., Bodnarchuk
I.A., Yaradaikin S.P., Rosta L., Aksenov V.L.
On structural features of fullerene C60
dissolved in carbon disulfide: complementary
study by small-angle neutron scattering and
molecular dynamic simulations |
P7.5 |
Chernogorova O.P., Drozdova E.I.,
Ovchinnikova I.N.
Effect of high-temperature annealing on the
structure and properties of the superelastic
hard carbon particles obtained from fullerenes
under pressure |
P7.6 |
Davydov V.A., Shiryaev A.A., Rakhmanina
A.V., Filonenko V.P., Vasil`ev A.L., Autret
C., Agafonov V.N., Khabashesku V.N.
Polyhedral nanosize carbon particles at high
pressures and temperatures |
P7.7 |
Basharin A.Y., Dozhdikov V.S., Turchaninov
M.A., Sobina O.A.
Ostwald rule of stages applied to the supercooled
liquid carbon |
P7.8 |
Kataeva E.A., Bozhko A.D., Ishchenko
T.V., Shupegin M.L., Demishev S.V.
Electric field-enhanced charge transport in
amorphous carbon films |
P7.9 |
Kyzyma O.A., Avdeev M.V., Aksenov
V.L., Korobov M.V., Snegir S.V., Bulavin L.A.,
Rosta L.
Cluster formation and solvatochromism in fullerene
C60 solutions based on nitrogen-containing
solvents |
P7.10 |
Bykov N.Y., Leshchev D.V.
Modeling of water clusters formation processes
in the inner atmosphere of 67P/Churyumov-Gerasimenko
comet |
P7.11 |
Bykov N.Y., Leshchev D.V.
Collision models of monomer-cluster and cluster-cluster
interaction for the direct simulation Monte
Carlo method |
P7.12 |
Mezhov-Deglin L.P., Efimov V.B.,
Kolmakov G.V., Levchenko A.A., Lokhov A.V.,
Izotov A.N., Nesvizhevsky V.V.
Novel nanocluster systems in superfluid helium
|
P7.13 |
Afrosimov V.V., Basalaev A.A., Panov
M.N., Smirnov O.V.
Formation of carbonic cluster ions at the
ionization of fullerenes and multiatomic molecules
of hydrocarbons |
P7.14 |
Rud A.D., Kuskova N.I., Ivaschuk
L.I., Uvarov V.N., Zelinskaya G.M., Perekos
A.E., Belyi N.M.
Structure state of carbon nanomaterials produced
by high-energy electric discharge techniques
|
P7.15 |
Tropin T.V., Avdeev M.V., Kyzyma
O.A., Aksenov V.L.
Kinetics of fullerene cluster growth in nitrogen-containing
solvents |
P7.16 |
Zhilinskaya E.A., Aboukais A., Abi-Aad
E., Rakhmanina A.V., Davydov V.A., Agafonov
V.
Comparative EPR study of monomer and polymer
C60 phases |
P7.17 |
Zuev V.V., Potalyzin M.G., Kostromin
S.V., Shlikov A.V.
Polymer nanocomposites containing fullerene
C60 nanofillers |
|
8.Photoelectric and Optic Properties of
Fullerenes and Nanotubes
|
P8.1 |
Bekhterev A.N.
FTIR and DRS – spectroscopy of nanocarbon
vibration states |
P8.2 |
Dmytrenko O.P., Kulish M.P., Kobus
O.S., Olasiuk O., Bilyi M.M., Zabolotnyi M.A.,
Prylutskyi Yu.I., Shlapatska V.V.
Photoluminescence of organic semiconductors
sensitized by fullerenes C60 |
P8.3 |
Lewandowska K., Wrobel D., Milczarek
G.
Nanolayers of donor-acceptor systems composed
of fullerene and chromophor |
P8.4 |
Lopatin M.A., Klapshina L.G., Grigoryev
I.S., Semenov V.V.
Fullerene C60 as effective luminescence
quencher of Yb (III) phenyltetracyanoporphyrazine
complexe |
P8.5 |
Makarets N., Mikoushkin V.M.
Monte-Carlo model of formation of a swarm
of low energy electrons in fullerite C60
under electrons in the keV- energy range |
P8.6 |
Bazhenov A.V., Bashkin I.O., Maksimuk
M.Yu., Fursova T.N., Moravskii A.P.
C60H42 Oxidation in
Air |
P8.7 |
Meletov K.P., Arvanitidis J., Christofilos
D., Kourouklis G.A., Iwasa Y.
High temperature depolymerization of the 2D(R)
C60 polymer studied by Raman spectroscopy
|
P8.8 |
Mikoushkin V.M., Nikonov S.Yu.,
Shnitov V.V., Gordeev Yu.S.
Correlation of plasmon and Auger energies
and its use for diagnostic of irradiated and
degraded fullerite C60 |
P8.9 |
Mikoushkin V.M., Bryzgalov V.V.,
Nikonov S.Yu., Shnitov V.V., Gordeev Yu.S.,
Boltalina O., I.V. Gol'dt, Brzhezinskaya M.M.
Electronic structure and radiation instability
of C60F48 |
P8.10 |
Mikoushkin V.M., Solonitsina A.P.
Diffluence of solid C60 film due
to high rate surface diffusion of fullerenes
|
P8.11 |
Nikitenko S.L., Spitsina N.G., Kaplunov
M.G., Tomilova L.G.
New photovoltaic materials based on composites
of conjugated polymer with tetra-substituted
metallophthalocyanines and [60]fullerene |
P8.12 |
Lad'yanov V.I., Aksyonova V.V., Nikonova
R.M.
The FT-IR spectroscopic studies of the destruction
of the fullerites C60 and C70
under heating in the air |
P8.13 |
Pavlychev A.A., Brykalova X.O.
"Windows" in 1s shell photoemission from 1D
crystalline structures encapsulated in carbon
nanotubes |
P8.14 |
Sheka E.F., Razbirin B.S., Starukhin
A.N., Nelson D.K., Degunov M.Yu., Lyubovskaya
R.N., Troshin P.A., Fazleeva G.M., Gubskaya
V.P., Nuretdinov I.A.
Dependence of nanophotonics of fullerene solutions
on molecular structure |
P8.15 |
Razbirin B.S., Sheka E.F., Starukhin
A.N., Nelson D.K., Degunov M.Yu., Troshin
P.A., Lyubovskaya R.N.
Shpolskii effect in optical spectra of frozen
toluene solutions of organic C60-fullerene
derivative |
P8.16 |
Sabirov D.Sh., Bulgakov R.G., Khursan
S.L., Razumovskii S.D.
Chemiluminescent test for oxofullerenecarbonyl
oxides generated by fullerenes ozonolysis
|
P8.17 |
Sporysh I., Frolov V., . Gogotsi
H., Kysil O., Buzaneva E., Lukashuk L., Penkova
L., Ritter U., Scharff P., Erb T., Gobsch
G.
Photospectroscopy revealing of interface organization
of fullerol molecule and molecular metal ion
complex with protein amino-acid molecule as
novel fullerene derivative for single molecular
biosensor |
P8.18 |
Kysil1O., Sporysh I., Buzaneva E.,
Erb T., Gobsch G., Ritter U., Scharff P.
Design and testing of fullerene photoprobes
for ds-, ss-DNA molecules |
P8.19 |
Uvarov M.N., Kulik L.V., Dzuba S.A.
Spin relaxation of fullerene C70
photoexcited triplets in glassy matrices |
P8.20 |
Belousova I.M., Kislyakov I.M., Videnichev
D.A., Rozhkova N.N., Tupolev A.G.
Shungite carbon as a material for optical
limiting of high intensity laser radiation
in the visible and near infrared region |
P8.21 |
Zakharova I.B., Kvyatkovskii O.E.,
Ermolaeva G.M., Shilov V.B., Spitsyna N.G.
Nonlinear optical properties of fullerene-porphyrin
complexes |
|
9. Biological and Medical Aspects of Nanocarbons
|
P9.1 |
Abdullin T.I., Nikitina I.I., Bulatov
E.R., Bondar O.V.
Carbon nanotube-based separation and analysis
of nucleic acids |
P9.2 |
Goryunov A., Borisova A., Rozhkov
S., Rozhkova N.
Spontaneous haemoglobin Fe(II) oxidation in
fullerene C60 water dispersion
|
P9.3 |
Ichkitidze L.P., Podgaetsky V.M.,
Selishchev S.V.
Bulk biocompatible composite nanomaterial
|
P9.4 |
Ichkitidze L.P., Podgaetsky V.M.,
Ponomarova O.V., Selishchev S.V.
Research of durability of seams of the cartilage
tissue with composite nanomaterial in the
laser solder |
P9.5 |
Kisel V.P.
Antipodal effects of fullerene nanoparticles
on biological tissues are determined by deformation
hardening or softening |
P9.6 |
Povarov N.I., Yakutseni P.P.
Fullerenes and bioions: ensembles of structures
for nanobio |
P9.7 |
Sharonova L.V., Melenevskaya E.Yu.,
Podosenova N.G., Kuznetsov A.S.
Investigation of specific adsorption properties
of silica gel in respect to blood plasma lipoproteides
in the presence of fullerene |
P9.8 |
Ulanova L.S., Piotrovsky L.B., Dumpis
M.A., Litasova E.V., Shavlovsky M.M., Kiselev
O.I.
Complexes of pristine fullerene C60
with proteins |
|
|
|
10. Industrial Applications of Nanocarbons
|
P10.1 |
Obolensky M.A., Basteev A.V., Bazyma
L.A.
Hydrogen storage in irradiated low dimensional
structures |
P10.2 |
Bobrinetskiy I.I., Nevolin V.K.
Carbon nanotubes in electronics and sensor
devices |
P10.3 |
Mordkovich V.Z., Karaeva A.R., Zaglyadova
S.V., Maslov I.A., Don A.K.
Higher yield growth of multiwall carbon nanotubes
at Fe-based catalysts |
P10.4 |
Kiselev V.M., Kislyakov I.M., Pavlova
A.L.
Development and study of new modified fullerene
coatings for the singlet oxygen generation
|
P10.5 |
Penkova A.V., Toikka A.M., Pientka
Z., Polotskaya G.A.
MWCNT/poly(phenylene-iso-phtalamide) nanocomposite
membranes for pervaporation of organic mixtures
|
P10.6 |
Sapurina I.Yu., Stejskal J.
Nanocomposites based on carbon materials and
polyaniline for various applications |
P10.8 |
Vershinin N.N. , Efimov O.N., Bakaev
V.A., Korobov I.I., Gusev A.L., Alexenskii
A.E., Vul' A.Ya.,
Newcatalytic systems based on nanodiamonds
for CO oxidation |
|
11. Others
|
P11.1 |
Alekseyev N.I., Aleshin A.N., Aleshin P.A.,
Charykov N.A., Namasbaev V.I., Potalitsin
M.G., Zuev V.V.
Conductivity of polyamids, 6, modified with
fullerenes and nanoplanar carbon. |
P11.2 |
Alekseyev N.I., Goncharov V.D.
Mechanism for carbon nanotube assembly to
the bundles and calculation of existence domains
for different nanotube structures on the diagram
" temperature – catalytic particle diameter
" |
P11.3 |
Bazhenov A.V., Fursova T.N., Grazhulene
S.S. Red'kin A.N., Telegin G.F.
Sorption of metals on multiwall carbon nanotubes
|
P11.4 |
Bozhko A.D., Kataeva E.A., Glushkov
V.V., Ishchenko T.V., Shupegin M.L., Demishev
S.V.
Inelastic tunnelling of electrons in amorphous
metal-carbon nanocomposites |
P11.5 |
|
P11.6 |
Davletova O.A., Zaporotskova I.V.
Impact of pyrolized polyacrylonitrile structure
on the process of oxidation |
P11.7 |
Davletova O.A., Zaporotskova I.V.
Fluorination of carbon nanostructures on the
base of pyrolized polyacrylonitrile |
P11.8 |
Davydov V.Ya., Kalashnikova E.V.
Comparison of adsorption properties of some
nanocarbon materials surfaces |
P11.9 |
Diudea M.V.
C60 family and related lattices
|
P11.10 |
Efremenkova V.M., Krukovskaya N.V.,
Ustinova E.A.
Visualisation of the cutting edge applied
research in the field of fullerenes and nanotubes
|
P11.11 |
Fedorov G., Barbara P., Smirnov
D, Jimenez D., Roche S.
Exponential magnetoresistance of carbon nanotube
devices |
P11.12 |
Sominski G.G., Svetlov I.A., Tumareva T.A.
Ion treatment of field emitters having fullerene
coatings |
P11.13 |
Sajko D.S., Ganzha V.V.
Simulation of adsorption of wet steams on
a surface of non-metallic nanocrystals using
cluster methods |
P11.14 |
Meschi B.Ch., Ryzkin À.À., Ilyasov V.V.,
Nikiforov I.Ya., Ershov I.V., Velikochatzkii
D.À.
Zone structure and chemical bonds of two-dimensional
system MG/MnO(001): Ab initio study |
P11.15 |
Katin K.P., Podlivaev A.I.
Dependence between the frequency factor of
fullerene C20 thermal decay and
buffer gas pressure |
P11.16 |
Komarov I.A.
Nanotube analysis with the desktop educational
and research nanotechnological complex |
P11.17 |
Voznyakovsky A.P., Kudoyarova V.Kh.,
Kudoyarov M.F., Lebedev V.M., Lebedev
V.T.
Structure of modified polysiloxan block–copolymers
in neutron scattering |
P11.18 |
Kulbachinskii V.A., Bulychev B.M.,
Lunin R.A., Kytin V.G.
Superconductivity of fullerides AnHgxC60
(A = K, Rb; n = 2, 3) synthesised from amalgams |
P11.19 |
Makarova T.L., Kvyatkovskii O.E.,
Zakharova I.B., Buga S.G., Volkov A.P., Shelankov
A.L.
Reversible magnetic ordering in fullerene
films |
P11.20 |
Maslov M.M.
Numerical simulation of hydrocarbon cubane-based
nanostructures |
P11.21 |
Matzuy L., Vovchenko L., Prylutskyy
Yu., Oliynyk V., Launetz V., Eklund P.
Electrodynamic properties of nanocarbon-epoxy
composites |
P11.22 |
Moliver S.S.
Magnetic ordering in abruptly compressed FCC
fullerite |
P11.23 |
Nasibulin A.G., Anisimov A.S., Jiang
H., Shandakov S.D., Launois P., Cambedouzou
J., Kauppinen E.I.
Investigations of single-walled carbon nanotube
formation mechanism |
P11.24 |
Nasibulin Albert G. Prokofyeva E.V.,
Zaporotskova I.V.
Ñapillary introduction of elementary fluorine
and oxygen into single-walled carbon nanotube:
semi-empirical research |
P11.25 |
Rodin V.M., Emelianov G.A., Vozniakovskii
A.P., Udin V.E.
Stabilization iron nanoparticles for magnetic
fluids |
P11.26 |
Sabirov D.Sh., Bulgakov R.G., Khursan
S.L.
Fullerenes reactivity in terms of local curvature
and polarizability |
P11.27 |
Sheka E.F.
Broken spin-symmetry HF and DFT approaches.
À comparative analysis for nanocarbons |
P11.28 |
Shpilevsky E.M.
Mass transfer in the metal-fullerene structures
|
P11.29 |
G.G. Sominski, T.A.Tumareva, V.E.
Sezonov, S.K. Gordeev, S.B. Korchagina, D.A.
Sakseev
Field emitters on the base of nanocarbon composite
materials |
P11.30 |
Talyzin A.V., Solozhenko V.L., Kurakevych
O.O., Szabo T., Dékány I., Kurnosov A., Dmitriev
V.
Expansion of graphite oxide lattice due to
high pressure induced water insertion |
P11.31 |
Terekhov A.I.
Scientometric indicators for evaluating the
carbon nanotechnology development |
P11.32 |
Udovyk O.O.
Solar fullerenes and carbon nanotubes |
P11.33 |
Yagafarov O.F., Gromnitskaya E.L.,
Lyapin A.G., Brazhkin V.V., Kondrin M.V.,
Bogdan A.V.
New data on compressibility of molecular fullerites
C60 and C70 |
P11.34 |
Zagainova V.S., Makarova T.L., Spitsina
N.G., Yagubskii E.B.
Magnetization training effect in fullerene-containing
single molecular magnet |
P11.35 |
Zakharova I.B., Suprun E.I., Makarova
T.L.
C60CdS thin film as a bulk heterojunction
|
P11.36 |
Zubov V.I., Zubov I.V.
The molecular form of carbon - fullerenes,
and fullerites. Pre-hystory, discovery and
physical properties |
|
|
|
|