Web of Science® | |
---|---|
ФТИ в 200022 гг. | |
Статей | 25425 |
Цитируемость | |
суммарная | 326761 |
на статью | 12,9 |
Индекс Хирша | 169 |
G-индекс | 286 |
Scopus® | |
---|---|
ФТИ в 200022 гг. | |
Статей | 28655 |
Цитируемость | |
суммарная | 364193 |
на статью | 12,7 |
Индекс Хирша | 180 |
G-индекс | 304 |
Юдина Елена Борисовна
Алмазные наночастицы как контрастный агент для магнитно-резонансной томографии. ЖТФ, т.94, 9, 2024, с. 1474 - 1482
https://doi.org/10.61011/JTF.2024.09.58667.70-24
Diamond nanoparticles as a contrast agent for MRI. Tech. Phys., v.69, 9, 2024, p. 1365 - 1372
https://doi.org/10.61011/TP.2024.09.59283.70-24
Pyrolysis mass-spectrometry study of detonation nanodiamonds surface chemistry. Fuller. Nanotub. Carbon Nanostruct., v.31, 1, 2023, p. 68 - 74
http://dx.doi.org/10.1080/1536383X.2022.2120477
CVD Nanocrystalline Diamond Film Doped with Eu. Materials, v.15, 16, 2022, ArtNo: #5788
http://dx.doi.org/10.3390/ma15165788
The size effect of faceted detonation nanodiamond particles on electrorheological behavior of suspensions in mineral oil. Diam. Relat. Mat., v.125, 2022, ArtNo: #108967
http://dx.doi.org/10.1016/j.diamond.2022.108967
Development of Submicrocapsules Based on Co-Assembled Like-Charged Silica Nanoparticles and Detonation Nanodiamonds and Polyelectrolyte Layers. Pharmaceutics, v.14, 3, 2022, ArtNo: #575
http://dx.doi.org/10.3390/pharmaceutics14030575
Spatially Resolved Spin-Lattice Relaxation Times and Line Widths in Manganese-Grafted Detonation Nanodiamonds. J. Phys. Chem. C, v.126, 3, 2022, p. 1489 - 1495
http://dx.doi.org/10.1021/acs.jpcc.1c09026
Sonication assisted advanced oxidation process: hybrid method for deagglomeration of detonation nanodiamond particles. Fuller. Nanotub. Carbon Nanostruct., v.30, 2, 2022, p. 283 - 289
http://dx.doi.org/10.1080/1536383X.2021.1935887
Модификация механизма протонной проводимости перфторированного мембранного сополимера при помощи наноалмазов. Изв. АН, сер. хим., т.9, 2021, с. 1713 - 1717
Modification of the mechanism of proton conductivity of the perfluorinated membrane copolymer by nanodiamonds. Russ. Chem. Bull., v.70, 9, 2021, p. 1713 - 1717
http://dx.doi.org/10.1007/s11172-021-3274-4
Manganese-grafted detonation nanodiamond, a novel potential MRI contrast agent. Diam. Relat. Mat., v.119, 2021, ArtNo: #108590
http://dx.doi.org/10.1016/j.diamond.2021.108590
PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI. Magn. Reson. Med., v.86, 2, 2021, p. 935 - 942
http://dx.doi.org/10.1002/mrm.28762
Deagglomeration of polycrystalline diamond synthesized from graphite by shock-compression. Fuller. Nanotub. Carbon Nanostruct., v.29, 10, 2021, p. 779 - 782
http://dx.doi.org/10.1080/1536383X.2021.1892077
Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: Effect of nanodiamonds surface. Carbon, v.174, 2021, p. 138 - 147
http://dx.doi.org/10.1016/j.carbon.2020.12.014
Structural Studies of Detonation Nanodiamonds with Grafted Metal Ions by Small-Angle Neutron Scattering. J. Surf. Invest. X-ray, v.14, Suppl. 1, 2020, p. S132 - S133
http://dx.doi.org/10.1134/S1027451020070289
Электроповерхностные свойства гидрозолей детонационного наноалмаза в зависимости от размера дисперсных частиц. Коллоидный ж., т.82, 4, 2020, с. 416 - 422
http://dx.doi.org/10.31857/S0023291220040175
Electrosurface Properties of Detonation Nanodiamond Hydrosols as Depending on the Size of Dispersed Particles. Colloid J., v.82, 4, 2020, p. 369 - 375
http://dx.doi.org/10.1134/S1061933X20040171
The role of charge states in the self-organization of detonation nanodiamonds nanoparticles. Diam. Relat. Mat., v.107, 2020, ArtNo: #107903
http://dx.doi.org/10.1016/j.diamond.2020.107903
Examining relaxivities in suspensions of nanodiamonds grafted by magnetic entities: comparison of two approaches. Magn. Reson. Mater. Phys. Biol. Med., v.33, 6, 2020, p. 1 - 4
http://dx.doi.org/10.1007/s10334-020-00847-3
Unique rheological behavior of detonation nanodiamond hydrosols: The nature of sol-gel transition. Carbon, v.161, 2020, p. 486 - 494
http://dx.doi.org/10.1016/j.carbon.2020.01.054
Advanced oxidation process for detonation nanodiamond surface chemical modification. J. Phys.: Conf. Ser., v.1400, 5,
В книге (сборнике): International Conference PhysicA.SPb/2019, 2019, ArtNo: #055044
International Conference PhysicA.SPb/2019; St.Petersburg, Russian Federation; 22–24 October 2019
http://dx.doi.org/10.1088/1742-6596/1400/5/055044
Interaction of Carboxyl Groups with Rare Metal Ions on the Surface of Detonation Nanodiamonds. Eur. J. Inorg. Chem., v.2019, 39-40, 2019, p. 1 - 6
http://dx.doi.org/10.1002/ejic.201900607
Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls. Appl. Clay Sci., v.173, 2019, p. 1 - 11
http://dx.doi.org/10.1016/j.clay.2019.03.007